Use of silicon photonics wavelength multiplexing techniques for fast parallel readout in high energy physics

G. Alimonti(1), R. Ammendola(2), A. Andreazza(1), D. Badoni(2), V. Bonaiuto(3), M. Casalboni(3), F. De Matteis(3), A. Mai(4),

G. Paoluzzi(2), P. Prosposito(2), A. Salamon(2), G. Salina(2), F. Sargeni(3), A. Satta(2), S. Schrader(5), P. Steglich(5)

(1) University of Milan, Milan, Italy - (2) INFN Structure of Rome Tor Vergata, Rome, Italy - (3) University of Rome Tor Vergata, Rome, Italy

(4) IHP - Innovations for High Performance Microelectronics, Frankfurt (Oder), Germany – (5) Technical University of Applied Sciences, Wildau, Germany

Each element will collect the signal from a pixel detector, **amplify and**

shape the electrical pulse which will

control a ring resonator tuned to its

peculiar optical wavelength and

coupled to a common optical line.

We propose to use wavelength multiplexing on a silicon photonics circuit for highly segmented pixel detectors readout. Many front-end channels can be encoded and transmitted on the same common optical line and subsequently decoded by the back-end optical demultiplexer chip.

- DWDM
 Laser
 Source

 \[\lambda_1 \lambda_2 \lambda_N \]

 \[\lambda_1 \lambda_2 \lambda_3 \lambda_N \lam
- no complex, power consuming digital electronics
- on-detector power consumption, interference and complexity reduction
- fast readout