

The upgraded beam monitor system of the FAMU experiment at RIKEN-RAL

M. Bonesini¹, R. Benocci¹, R. Bertoni¹, R. Mazza¹, T. Cervi¹, A. deBari², A. Menegolli², M.C. Prata², M. Rossella², L. Tortora³, E. Mocchiutti⁴, A. Vacchi⁴, E. Vallazza⁴

INFN Milano Bicocca, Dipartimento di Fisica G. Occhialini, Milano, Italy¹, INFN Pavia, Dipartimento di Fisica, Pavia, Italy², INFN Roma Tre, Roma, Italy³, INFN Trieste, Trieste, Italy⁴

Introduction: the proton radius puzzle and the FAMU expt

 7σ discrepancy in the proton charge radius measurement from e and μ measurements Not so clear exp situation with Zemach radius

 Exploded view of the 3 mm pitch hodoscope

The FAMU hodoscope system

- The system is based on 3 different hodoscopes (1 with 1 mm and 2 with 3 mm pitch) with similar design
 2 X/Y Bicron BCF12 square single clad
- 2 X/Y Bicron BCF12 square single clad scintillating fiber planes read by 3x3 mm² (or 1x1 mm2) Hamamatsu (Advansid) SiPM
 EMA coating (AI film wrapping) for 1 mm (3 mm) fibers to avoid light cross-talk
 As a first step: 32+32 channels readout by TPS readout boards (single SiPM powering/shaper/discr) + CAEN V792 QADC

- **Experimental method**:
- $\circ~\mu^{-}$ stops in the hydrogen target and forms a muonic atom
- A laser pulse drives the hyperfine (HFS) transition
- The transition is detected via X-rays emitted after (μZ)* de-exicitation [μ⁻ transfer to high-Z atoms (added to hydrogen) in the target]
- Plot number of detected transitions vs the laser frequency → determine ΔE_{HFS} = hv_0 (v_o laser resonance frequency)
- $_{\odot}~$ determine the proton Zemach radius from $\Delta E_{\rm HFS}$

The RiKEN-RAL muon facility

Improved electronics based on CAEN V1742 FADC (waveform \rightarrow peak, area, time) and common HV for a fiber plane (V_{brk} in a large SiPM sample is very similar) Mechanics printed on a 3D printer Normally only the 1 mm pitch hodo is installed (in front of the target) for beam monitoring . Additional ones used for beam characterization

 Main mechanics components for 1 mm pitch hodo : (a) light-tight half detector box; (b), (c) fiber holders for X/Y planes

Beam properties: surface μ⁺ (20-30 MeV/c), decay μ⁺/μ⁻ (20-120 MeV/c)

- Typical beam size ~10 cm² Δp/p FWHM 10% (decay muons), 5% (surface muons).
- Double pulse structure.
- An essential point is to study the steering of the beam into the target (need beam hodoscopes)

Beam hodoscope requirements:

- µ beams have very low intensity as compared to primary proton beams (pA instead of mA or mA) → conventional e.m. techniques (as current transformers, pickup, ...) may not be used, as signal would be too small
- need to use destructive tecniques, based on particle interactions with a detector
- beam hodoscope must:
 - have minimal thickness along beam
 - sustain high beam rates
 - work in noisy environment

Performances at RIKEN-RAL

1/2 MIP separation at BTF (TPS readout) **Measured beam intensity at RIKEN-RAL** 2000 [normalized at previous meas. at 60 MeV/c] 1500 **Measured beam profile at RIKEN-RAL** 500 6000 5000 4000 4000 3000 3000 2000 1000 1000 10 20 X/Ybeam profile at RiKEN-RAL

RIKEN-RAL PORT

beam momentum (MeV/c)

References:

• A. Vacchi et al., SPIE Newsroom (2012) doi: 10.1117/2.1201207.004274

• A. Adamczack et al., JINST 11/05 P05007 (2016)

