PM2018-14th Pisa Meeting on Advanced Detectors

Federica Oliva^{1,2} on behalf of the PADME Collaboration, email: federica.oliva@le.infn.it ¹INFN Lecce, ² Università del Salento – 73100 Lecce, Italy

The role of the veto system

The PADME experiment will search for the production of the dark photon A'* with the missing mass method¹

The experiment will be allocated at the Beam Test Facility of the Laboratori Nazionali di Frascati(LNF)

For E_{beam} =550 MeV $M_{A'} \leq 23.7 \text{ MeV/c}^2$

			at entit bremsstrannung photons win nave lower energy
SIGNAL	$e^+e^- \rightarrow \gamma A'$		E _{e+} <e<sub>beam</e<sub>
BACKGROUND Bremsstrahlung on the active diamond target	$e^+N \longrightarrow e^+N\gamma$	2 different veto systems f	for positrons which differ from the energy of the photon emit
Annihilation into 2(or 3) SM photons	$e^{\pm}e^{-} \longrightarrow \gamma \gamma(\gamma)$	≽ 1. Pos	itron Veto in the magnetic field, covering the internal lef vertical wall (1 m long) of the dipole magnet
		> 2. HEP High Energ	Covering the angular region between the beauty Positrons dump and the magnet (450 <e<sub>e+<550 MeV)</e<sub>
calorimeter γ R _{out}	electron veto spectrometer	BTF vacuum beam A Bremsstr coincidence Energy bala event ident	ahlung event is identified by an ECAL cluster and a hit in PV in tile Time reso<1ns needed! ance with the beam may be requested to improve the Bremsstrahlu ification

*Physics motivation and experiment layout more deeper illustrated in the poster: "The investigation on the dark sector at the PADME experiment".

Electron veto

in the magnetic field, covering the internal right vertical wall (1 m long) of the dipole magnet to search for visible decays of the dark photon!

amit bromsstrahlung photons will have lower onergy

Veto system parameters

SUPPORT FRAME

PADME

Alluminum support structure to hold an array of 96(16) scintillating bars for 🗲 PV and EV (HEP) together with the FEE boards Scintillating bars are parallel to the magnetic field direction and rotated around their longitudinal axis by 0.1 rad to minimize geometrical

FRONT-END ELECTRONICS (FEE)

Silicon photo-multiplier SiPM

- ✓ Able to work inside vacuum
- ✓ Sustain stationary magnetic field of 0.6 T
- ✓ Low Operating Voltage
- ✓ Cheap

inefficiencies

Hamamatsu 13360

FEE channel includes a transimpedance amplifier (gain=4)

HV regulation module+voltage end current monitor One FEE board serves 4 channels

GAIN≈10⁵ -10⁶

Signals will be digitized by **CAEN V1742**

SCINTILLATING BARS

SCINTILLATORS

Polystyrene-based scintillating plastic bars with 1,5% POPOP produced by **UNIPLAST**

DIMENSION

Long side perpendicular to the beam!

Cross section :10x10 mm² **Length**: 200 mm(to be cut and polished) **OPTICAL FIBERS**

BCF-92 optical fibers housed in a longitudinal groove of cross section 1.3x1.3 mm²

BCF-92

- light attenuation length is >3.5 m
- maximal absorbition at 400nm, matching POPOP emission
- maximal emission at 492 nm(Wave Length Shifter)

The construction of a prototype

16 bars cut at the desidered length (of approximately 180 mm to fit into the dipole **Readout/Light collection** Channels Scintillator species magnet clearance) and covered with a chemical reflector; 4 counters served by each board (in green in fig.A). Several types used to compare performance (B). Fiber glued in the groove 4 and 8 Support holding scintillators and FE boards assuring thermal coupling to the vacuum vessel Fiber glued and aluminised* 5 and 9 WLS fibers of type BCF-192; some of them glued with Eljen EJ500 optical epoxy 6 and 10 No fiber used cement Optical contacts improved with Saint-Gobain BC-630 silicone optical grease Fiber in the groove 7 and 11 SiPMs Hamamatsu S12572 used for the first prototype (> noise than 13360 SiPMs, chosen for the final experiment) *8mm Al emulating the wall of the vacuum vessel Tested on beam in April 2017 and candidate to be the first version of the HEP detector in PADME

BTF trigger

lest beam of the prototype

At the Beam Test Facility of LNF, Frascati

E_{beam} = 500 MeV

Channels 0-3 and 12-15 used as offline trigger

Lead glass calo(BTF Calo) downstream to measure beam multiplicity (particles per bunch) and energy. Beam crossing all scintillators in the array as shown in fig. C. A remote controlled table hosting the prototype allows varying the distance of the hit from the

SiPM (9 steps from 10 mm to 170 mm).

RESULTS²

Time resolution measured using Δt 1 for pairs of scintillating bars of the same kind (see scheme B) as a function of the distance of the beam impact point from the SiPM. The different species of scintillators (and also the beam position) affect a lot the trend (fig.1). Best performance (<1 ns at all distances) for scintillators with glued fibers .

Efficiency:

DAQ

 N_{events} with N_{phe} >10 / $N_{triggers}$

Inefficiency (fig.2):

below 0.1% at all distances for with optical fibers readout

CAEN V1742 rate: 5GS/s

increasing quickly with the distance from SiPM for scintillators without fibers

Noise below 1% for all scintillators

updates

Successfull operation of FEE in vacuum demonstrated SiPM tested with a led driver, giving a good time resolution

Scintillator only

Scintillator only

Fiber and scintillator

Fibre and scintillators

References

¹M. Raggi and V. Kozhuharov, "Proposal to Search for a Dark Photon in Positron on Target Collisions at DAØNE Linac", Adv. High Energy Phys., 2014; ²F.Ferrarotto et al., "Performance of the prototype of the charged particle veto system of the PADME experiment", DOI 10.1109/TNS.2018.2822724, IEEE Transactions on Nuclear Science.