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Motivation
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• The CMS detector is undergoing an extensive upgrade:

• Among other significant advancements (see more than twenty talks and posters in 
this conference), the new ECAL, HGCAL, Barrel and Endcap Timing detectors will 
be able to tag the events with high precision (~30 ps) timing information, which 
will help to mitigate an expected average of 200 pile-up events of the HL-LHC. 
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Motivation: need for low jitter clock distribution
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LHC clock 
40.078 MHz

Sensor+TDCLHC Clock  
distribution

• The clock distribution may significantly degrade the precise timing information obtained 
from the CMS Phase-II detectors.

•  A 15 ps random jitter on the clock may have an impact of 3.5 ps (assuming 30 ps 
[Sensor+TDC] uncertainty). 

• The impact will be significantly larger for higher jitter values. 

• We need a low-jitter clock distribution not to jeopardise the timing performance.
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Motivation

 4

• Distributing a low jitter clock (sub 20 ps RMS) to over 10000 clock 
distribution channels in a radiation environment with temperature 
variations is quite challenging. The limited material and cable budget in the 
detector makes the task even more ambitious.

• It is important to keep track of the drifts and phase differences 
between all of the channels. Therefore, investigating feasibility of a jitter 
monitoring system is necessary.

• Starting from the RF clock, the components of the current clock 
distribution system is required to be extensively tested. 

• The measurements will be used to evaluate the feasibility and/or redesign 
individual future components of the clock distribution path. 

•  CERN, CMS and industry based solutions are being explored and 
considered. 
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What to expect?
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• Introduction and basic concepts

• Back-end tests

• Front-end tests

• Full chain test

• Outlook and conclusion
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Testing methodology
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• Two independent test-benches have been used to perform the tests 
presented in this talk:

• CEA PCD test stand (Lecroy SDA 820Zi-B scope - 20 GHz), 

• CERN HPTD test stand (Keysight DSA91204 scope -12 GHz, Keysight 
SSA-E5052B spectrum analyzer).

• In order to evaluate each component on the path, we increase the test-
setup complexity starting from the clock generator. 

• Jitter is evaluated using a very high-speed oscilloscope, 1M samples are 
collected to obtain Time Interval Error (TIE) jitter. 

• The channel to channel jitter is evaluated using a secondary channel as 
the reference clock input to the scope. 

• Our analysis software:

• https://github.com/osahin/jitter-analyzer

https://github.com/osahin/jitter-analyzer
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Total jitter has two different types of components:

• Random Jitter (RJ) - can be modelled by a Gaussian,

• Deterministic jitter (DJ) - bounded over time.

• A naive but useful model can be obtained by convoluting a Gaussian and two dirac-
delta functions (Dual-dirac-delta model). 

• We quote the RMS of this naive model as figure of merit to have a simple 
understanding of the overall jitter.

Total jitter: dual-dirac-delta method
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δ1 δ2
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What to expect?
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• Introduction and basic concepts

• Back-end tests

• Front-end tests

• Full chain test

• Outlook and conclusion
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Our test setup is similar to the current µTCA 
clock distribution system of the CMS 
detector: 

• One of two central boards (AMC13-
XG) is distributing the LHC clock 
through backplane of the µTCA crate 
(The Phase II systems will use ATCA 
crates). 

• The input clock is 2xLHC clock freq, 
the distributed clock is 40.078 MHz.

• Dual star - clock distribution topology 
of CMS µTCA is similar to the future 
ATCA clock distribution network. 

• In our tests, we used a custom AMC 
(FC7) board to emulate the back-end 
clock distribution node. This board 
encodes the clock and through the 
optical links distribute it to front-end. 

µTCA clock distribution
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AMC
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AMC
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AMC

AMC

AMC

AMC

AMC

AMC

AMC

AMC

MCH MCH

In the CMS topology one of the MCH slots  
are occupied by the AMC13(XG) board.
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Crate

FC7VADATECH PSU
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• An 80 MHz (2xLHC clock) clean clock (decoded as Trigger-Timing (TTC) optical signal) is 
used as an input to the µTCA crate (RJ 3.6 ps, DJ 7.9).

• The backplane signals are probed using FC7 front-panel connector which includes a jitter 
cleaner, CDCE62005 (PLL), in the clock distribution network. 

• The 40.078 MHz clock is used as a reference clock (~2.5 ps RJ).

µTCA clock distribution
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µTCA clock distribution
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FC7

Clk inj

AMC13

• An 80 MHz (2xLHC clock) clean clock (decoded as Trigger-Timing (TTC) optical signal) is 
used as an input to the µTCA crate (RJ 3.6 ps, DJ 7.9).

• The backplane signals are probed using FC7 front-panel connector which includes a jitter 
cleaner, CDCE62005 (PLL), in the clock distribution network. 

• The 40.078 MHz clock is used as a reference clock (~2.5 ps RJ).
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Result: µTCA clock distribution
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PLL 
Si5344

FC7 (output clk) wrt Si5344 (input clk) 
RJ 5.6 ps 
DJ 28.2 ps 
RMS 15.1 ps

FC7

A non negligible DJ component is observed in the µTCA clock distribution network even 
after the FC7’s PLL. 
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What to expect?
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• Introduction and basic concepts

• Back-end tests

• Front-end tests

• Full chain test

• Outlook and conclusion
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• The spectrum plot shows the noise in frequency 

• Over 1 Hz to 10 MHz spectrum, 9 ps random jitter is observed, 

• between 100 Hz to 10 MHz 5.2 ps.

GBTx tests: single channel
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• .
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GBTx tests: two channels two BEs
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• The measurements are obtained using the DSA91204 oscilloscope. For the 
given measurements, the modules are evaluated on the bench, without any 
back-end crate (eg µTCA).

• The RMS of the two channel measurement (assuming dual-dirac-model) 12.4 
ps indicating that with a low jitter input clock, GBTx is capable of delivering 
low jitter clock to on detector modules. 

• The measurements (particularly DJ) are extremely sensitive to passive 
components (eg connectors and cables) and installation of these components.

• A monitoring system is necessary to ensure proper installation of 10000 
channels and maintenance over more than a few years of operation. 

Result: GBTx tests
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Measurement RJ [ps] � [ps] DJ [ps] � [ps]

Single channel - two e-links 7.8 ± 0.1 5.6 ± 4.3
Two channels - single BE 8.7 ± 0.1 24.2 ± 2.1
Two channels - two BEs 13.7 ± 0.1 12.7 ± 1.4
Two channels - two BEs - Si5344 PLL 8.2 ± 0.1 18.6 ± 2.3
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Simulating the front-end clock distribution jitter
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• Sensor = 30 ps, RJ = 10 ps, and DJ = 20 ps, 

• Without DJ: Sigma 31.60 ps

• With DJ: Sigma 33.08 ps (Gaussian fit)
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What to expect?
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• Introduction and basic concepts

• Back-end tests

• Front-end tests

• Full chain test

• Outlook and conclusion
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clock distribution (see GBTx tests). 
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• The simulation of 30 ps RMS (sensor) convoluted with 11.5 ps RJ and 50.7 ps 
DJ assuming the dual-dirac jitter model. RMS of the resulting distribution is 
40.9 ps.

• DJ becomes significant; it is important to keep (if possible to minimalize) the 
deterministic jitter under control. 

Simulating the clock distribution jitter
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What to expect?
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• Introduction and basic concepts

• Backend tests

• Frontend tests

• Full chain test

• Outlook and conclusion
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• . The ATCA crate tests will be performed:

• Awaiting for the ATCA components: we will start with the 
Imperial College Serenity HGCAL-DAQ board.

• We are in contact with other Phase II hardware designers 
as well.

• Variations in the deterministic jitter indicate that a 
monitoring system is necessary.  This may have an impact 
on the board design.

• Moreover, we are investigating industry based solutions 
(e.g. Greenfield Technologies) for the “pure clock” 
distribution (Type-II). 

• We already received our first custom precise clock  
and delay generator module from Greenfield 
Technologies. The module is already being used for 
the HGCAL HGROC-TDC and PLL measurements 
effectively. 

• We are also studying the specifications of a possible 
new radiation-hard front-end clock distribution ASIC. 

Outlook

 25
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• DTH (CERN) — Clock and trigger distribution, and DAQ.

• Serenity (Imperial College) — DAQ leaf board. We will monitor the electrical clock 
distribution using an SMA daughterboard (CEA-Irfu). 

• Initially using the GBT-FPGA and GBTx we will test the encoded clock. GBTx is soon to be 
replaced with lpGBT; enabling us to evaluate the Phase-II FE clock distribution. 

ATCA clock distribution
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Conclusion
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• In our tests, conceptually, we obtained encouraging results: indicating that with a well 
thought and built back-end, and a precision clock-distribution aware FE, the system should 
be capable of delivering ~10 ps RMS RJ jitter with the current electronics in the encoded 
system.  
However, it requires a careful design and installation for both back-end and front-end 
components. Deterministic jitter should be tested and monitored during the operation. 

• What would be the overall performance with next generation electronics (particularly 
lpGBT)?

• A huge amount of work ahead of us to make sure that we can achieve such a 
performance with the Phase-II detectors. A close collaboration between back-end and 
front-end developers is crucial. 

• A monitoring system is necessary and various options should be explored.  

• Our initial tests indicate that the cable length has a negligible impact on the jitter 
performance.

• We are investigating the temperature effects. Studies are ongoing particularly for the 
100m fibre. 

• Our short-term main goal is to obtain ATCA measurements including the ATCA DAQ 
board evaluations



Backup
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BE tests: inventory
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CEA PCD test-stand:

• Stanford CG635 clock generator

• Lecroy SDA 820Zi-B (20 GHz)

• 2 x Xilinx KCU105 evaluation board

• Schroff and Vadatech µTCA crates

• Schroff ATCA crate

• MCHs, Power supplies 

• 2 x AMC13XG

• 2 x FC7, µTCA extender board

• 2 x VLDB (GBTx) and MM VTRx

• Si5344 Evaluation board

• Finisar SM SFP+, Avago MM SFP+

• Lecroy high-speed differential and optical 
probes.

• High quality shielded cables, converters.
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FE tests: inventory
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CERN HPTD test-stand:

• Stanford CG635 clock generator

• Keysight DSA91204 scope (12 GHz)

• Keysight SSA-E5052B spectrum analyzer

• 2 x Xilinx KCU105 evaluation board

• 2 x VLDB (GBTx) and MM VTRx

• Si5344 Evaluation board

• Finisar SM SFP+, Avago MM SFP+

• Keysight optical reference receiver

• High quality shielded cables, converters.
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• We generate the 80.156 MHz clock using CG635, and use Si5344 to clean 
the clock (also obtain a reference for measurements with oscilloscope). 
The optical TTC clock signal is emulated using the clock injector module.

• This clean optical clock is used as an input to the µTCA crate. 

µTCA clock input
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• We have also investigated the effect of different slots:

• Low variation both in RJ (<0.2 ps) and DJ (<4.5 ps) 

• No visible correlation between the jitter and the distance to the central 
module is observed. 

µTCA Clock distribution
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• After optimizing Si5344 PLL, we obtained 8.2 ps jitter (8.9 ps with the 
spectrum analyzer in a range of 1 Hz - 10 MHz).

GBTx tests: two channels

 36
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• https://github.com/osahin/jitter-analyzer

• The simulations are done assuming the Dual-Dirac model.

GBTx tests summary
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Measurement RJ [ps] � [ps] DJ [ps] � [ps]

Single channel - two e-links 7.8 ± 0.1 5.6 ± 4.3
Two channels - single BE 8.7 ± 0.1 24.2 ± 2.1
Two channels - two BEs 13.7 ± 0.1 12.7 ± 1.4
Two channels - two BEs - Si5344 PLL 8.2 ± 0.1 18.6 ± 2.3
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