The CMS Phase II upgrade - Precision Clock Distribution Studies

Özgür Şahin on behalf of the CMS collaboration
CEA Saclay-Irfu

ELBA2018
14th Pisa Meeting on Advanced Detectors
01.06.2018
• The CMS detector is undergoing an extensive upgrade:

• Among other significant advancements (see more than twenty talks and posters in this conference), the new ECAL, HGCAL, Barrel and Endcap Timing detectors will be able to tag the events with high precision (~30 ps) timing information, which will help to mitigate an expected average of 200 pile-up events of the HL-LHC.
Motivation: need for low jitter clock distribution

- The clock distribution may significantly degrade the precise timing information obtained from the CMS Phase-II detectors.

- A 15 ps random jitter on the clock may have an impact of 3.5 ps (assuming 30 ps [Sensor+TDC] uncertainty).

- The impact will be significantly larger for higher jitter values.

- We need a low-jitter clock distribution not to jeopardise the timing performance.
Distributing a low jitter clock (sub 20 ps RMS) to over 10000 clock distribution channels in a radiation environment with temperature variations is quite challenging. The limited material and cable budget in the detector makes the task even more ambitious.

It is important to keep track of the drifts and phase differences between all of the channels. Therefore, investigating feasibility of a jitter monitoring system is necessary.

Starting from the RF clock, the components of the current clock distribution system is required to be extensively tested.

The measurements will be used to evaluate the feasibility and/or redesign individual future components of the clock distribution path.

CERN, CMS and industry based solutions are being explored and considered.
What to expect?

• Introduction and basic concepts
• Back-end tests
• Front-end tests
• Full chain test
• Outlook and conclusion
Possible clock distribution schemes

TCDS2

Back-end Control & Clock Node (Typically DAQ)

Fiber @ 40 MHz

~100 m MM Fiber

LHC clock (RF / TTC-PON)

TCDS2

Back-end Specific Clock Dist. Module

Back-end Off detector

Front-end Readout board (GBTx - rad hard high speed com asic- > IpGBT)

Module specific connector and/or PCB traces @ 40 / 160 / 320 MHz

Front-end Readout board

ASIC (TDC)

Back-end Specific Clock Dist. Module

Back-end On detector

Front-end On detector

Encoded @ 2.5 / 5 Gbps

TCDS2

ASIC (TDC)

~100 m MM Fiber

Pure @ 40 / 160 / 320 MHz

LHC clock (RF / TTC-PON)

TCDS2

Back-end Control & Clock Node (Typically DAQ)
Testing methodology

• Two independent test-benches have been used to perform the tests presented in this talk:

 • **CEA PCD test stand** (Lecroy SDA 820Zi-B scope - 20 GHz),

 • **CERN HPTD test stand** (Keysight DSA91204 scope -12 GHz, Keysight SSA-E5052B spectrum analyzer).

• In order to evaluate each component on the path, we increase the test-setup complexity starting from the clock generator:

• Jitter is evaluated using a very high-speed oscilloscope, **1M samples** are collected to obtain **Time Interval Error (TIE) jitter**.

• The channel to channel jitter is evaluated using a secondary channel as the reference clock input to the scope.

• Our analysis software:

 • https://github.com/osahin/jitter-analyzer
Total jitter has two different types of components:

- **Random Jitter (RJ)** - can be modelled by a Gaussian,

- **Deterministic jitter (DJ)** - bounded over time.

- A naive but useful model can be obtained by convoluting a Gaussian and two dirac-delta functions (**Dual-dirac-delta model**).

- We quote the RMS of this naive model as figure of merit to have a simple understanding of the overall jitter.
What to expect?

• Introduction and basic concepts

• Back-end tests

• Front-end tests

• Full chain test

• Outlook and conclusion
Our test setup is similar to the current μTCA clock distribution system of the CMS detector:

- One of two central boards (AMC13-XG) is distributing the LHC clock through backplane of the μTCA crate (The Phase II systems will use ATCA crates).

- The input clock is 2xLHC clock freq, the distributed clock is 40.078 MHz.

- Dual star - clock distribution topology of CMS μTCA is similar to the future ATCA clock distribution network.

- In our tests, we used a custom AMC (FC7) board to emulate the back-end clock distribution node. This board encodes the clock and through the optical links distribute it to front-end.
An 80 MHz (2xLHC clock) clean clock (decoded as Trigger-Timing (TTC) optical signal) is used as an input to the μTCA crate (Rj 3.6 ps, DJ 7.9).

The backplane signals are probed using **FC7 front-panel connector** which includes a jitter cleaner, **CDCE62005 (PLL)**, in the clock distribution network.

The 40.078 MHz clock is used as a reference clock (~2.5 ps Rj).
• An 80 MHz (2xLHC clock) clean clock (decoded as Trigger-Timing (TTC) optical signal) is used as an input to the µTCA crate (Rj 3.6 ps, DJ 7.9).

• The backplane signals are probed using FC7 front-panel connector which includes a jitter cleaner, CDCE62005 (PLL), in the clock distribution network.

• The 40.078 MHz clock is used as a reference clock (~2.5 ps Rj).
Result: µTCA clock distribution

A non negligible DJ component is observed in the µTCA clock distribution network even after the FC7’s PLL.

- FC7 (output clk) wrt Si5344 (input clk)
- RJ 5.6 ps
- DJ 28.2 ps
- RMS 15.1 ps
What to expect?

- Introduction and basic concepts
- Back-end tests
- Front-end tests
- Full chain test
- Outlook and conclusion
The **GBTx chip** (a rad-hard high-speed communication ASIC widely used in LHC experiments) is tested using dedicated VLDB test board. For the front-end tests we did not use any crate and only employ a test-bench evaluation board (Xilinx KCU105) which send a clean encoded clock signal to front-end modules.

- The KCU105 boards sending encoded frames to the VLDB board. The clock source is CG635 (at 120.234 MHz).
• The spectrum plot shows the noise in frequency.
• Over 1 Hz to 10 MHz spectrum, 9 ps random jitter is observed,
 • between 100 Hz to 10 MHz 5.2 ps.
GBTx tests: single channel

1 Hz < f < 100 Hz
7.3 ps RMS jitter
Slow wander

100 Hz < f < 10 MHz
5.2 ps RMS jitter
High frequency jitter
In order to understand the effect of two independent back-end boards, two Xilinx KCU105 boards sending GBT frames to the VLDB board are employed. The 40.078 MHz CG635 clock source is fed to the Si5344 eval board.
The measurements are obtained using the DSA91204 oscilloscope. For the given measurements, the modules are evaluated on the bench, without any back-end crate (eg μTCA).

The RMS of the two channel measurement (assuming dual-dirac-model) 12.4 ps indicating that with a low jitter input clock, GBTx is capable of delivering low jitter clock to on detector modules.

The measurements (particularly DJ) are extremely sensitive to passive components (eg connectors and cables) and installation of these components.

A monitoring system is necessary to ensure proper installation of 10000 channels and maintenance over more than a few years of operation.
Simulating the front-end clock distribution jitter

- Sensor = 30 ps, RJ = 10 ps, and DJ = 20 ps,
- Without DJ: Sigma 31.60 ps
- With DJ: Sigma 33.08 ps (Gaussian fit)
What to expect?

• Introduction and basic concepts
• Back-end tests
• Front-end tests
• Full chain test
• Outlook and conclusion
μTCA: two crates two central PLLs

~3ps RJ increase and ~30ps DJ increase are observed with respect to the simpler BE clock distribution (see GBTx tests).
The simulation of 30 ps RMS (sensor) convoluted with 11.5 ps RJ and 50.7 ps DJ assuming the dual-dirac jitter model. RMS of the resulting distribution is 40.9 ps.

DJ becomes significant; it is important to keep (if possible to minimalize) the deterministic jitter under control.
What to expect?

- Introduction and basic concepts
- Backend tests
- Frontend tests
- Full chain test
- Outlook and conclusion
The ATCA crate tests will be performed:

- Awaiting for the ATCA components: we will start with the Imperial College Serenity HGCAL-DAQ board.
- We are in contact with other Phase II hardware designers as well.
- Variations in the deterministic jitter indicate that a monitoring system is necessary. This may have an impact on the board design.
- Moreover, we are investigating industry based solutions (e.g. Greenfield Technologies) for the “pure clock” distribution (Type-II).
- We already received our first custom precise clock and delay generator module from Greenfield Technologies. The module is already being used for the HGCAL HGROC-TDC and PLL measurements effectively.
- We are also studying the specifications of a possible new radiation-hard front-end clock distribution ASIC.
ATCA clock distribution

- **DTH (CERN)** — Clock and trigger distribution, and DAQ.

- **Serenity (Imperial College)** — DAQ leaf board. We will monitor the electrical clock distribution using an SMA daughterboard (CEA-Irfu).

- Initially using the GBT-FPGA and GBTx we will test the encoded clock. GBTx is soon to be replaced with lpGBT; enabling us to evaluate the Phase-II FE clock distribution.
Conclusion

• In our tests, conceptually, we obtained encouraging results: indicating that with a well thought and built back-end, and a precision clock-distribution aware FE, the system should be capable of delivering ~ 10 ps RMS RJ jitter with the current electronics in the encoded system. However, it requires a careful design and installation for both back-end and front-end components. Deterministic jitter should be tested and monitored during the operation.

• What would be the overall performance with next generation electronics (particularly lpGBT)?

• A huge amount of work ahead of us to make sure that we can achieve such a performance with the Phase-II detectors. A close collaboration between back-end and front-end developers is crucial.

• A monitoring system is necessary and various options should be explored.

• Our initial tests indicate that the cable length has a negligible impact on the jitter performance.

• We are investigating the temperature effects. Studies are ongoing particularly for the 100m fibre.

• Our short-term main goal is to obtain ATCA measurements including the ATCA DAQ board evaluations.
Backup
CEA PCD test-stand:

- Stanford CG635 clock generator
- Lecroy SDA 820Zi-B (20 GHz)
- 2 x Xilinx KCU105 evaluation board
- Schroff and Vadatech μTCA crates
- Schroff ATCA crate
- MCHs, Power supplies
- 2 x AMC13XG
- 2 x FC7, μTCA extender board
- 2 x VLDB (GBTx) and MM VTRx
- Si5344 Evaluation board
- Finisar SM SFP+, Avago MM SFP+
- Lecroy high-speed differential and optical probes.
- High quality shielded cables, converters.
FE tests: inventory

CERN HPTD test-stand:

- Stanford CG635 clock generator
- Keysight DSA91204 scope (12 GHz)
- Keysight SSA-E5052B spectrum analyzer
- 2 x Xilinx KCU105 evaluation board
- 2 x VLDB (GBTx) and MM VTRx
- Si5344 Evaluation board
- Finisar SM SFP+, Avago MM SFP+
- Keysight optical reference receiver
- High quality shielded cables, converters.
Jitter cleaner tests

Clock generator CG635

Jitter cleaner Si5344

Spectrum Analyzer SSA - E5052B

Si5344 out@120 MHz - loopBW-threshold 200 Hz
Si5344 out@120 MHz - loopBW-threshold 400 Hz
Si5344 out@120 MHz - loopBW-threshold 1 kHz
Si5344 out@120 MHz - loopBW-threshold 4 kHz

Phase noise [dBc/Hz]

Offset freq. [Hz]

RMS: 9.40 ps
RMS: 6.55 ps
RMS: 6.88 ps
RMS: 6.71 ps
• We generate the **80.156 MHz clock** using CG635, and use Si5344 to clean the clock (also obtain a reference for measurements with oscilloscope). The optical **TTC clock signal** is emulated using the clock injector module.

• This clean optical clock is used as an input to the µTCA crate.
μTCA: two crates two central PLLs

- Clock generator CG635
- Jitter cleaner Si5344
- Clk Inj
- AMC-13
- FMC
- Back-end
- Back plane 40.078 MHz
- MM OM3 (10 m) 80.156 MHz
- Front-end
- e-link
- VLDB
- VTRx
- HDMI-SMA
- SMA - BNC
- Oscilloscope Lecroy 820zi-b

- e-link wrt Si5344
 - RJ 8.2 ps
 - DJ 32.7 ps

- Clock source
 - BNC SMA 80.156 MHz

- HDMI 40.078 MHz
- SMA 40.078 MHz
- MM OM3 (10 m) 4.8 Gbps
- HDMI-SMA
μTCA: two crates single central PLL

Clock generator CG635

Clock source

Jitter cleaner Si5344

Clk Inj

Back-end

μTCA crate

AMC-13

Back plane 40.078 MHz

Back-plane 40.078 MHz

E-link wrt e-link

RJ 11.6 ps

DJ 45.5 ps

RMS 25.5 ps

Front-end

VTRx

VLDB

e-link

HDMI 40.078 MHz

Oscilloscope Lecroy 820zi-b

HDMI-SMA

SMA - BNC

HDMI-SMA

SMA - BNC

BNC

SMA

80.156 MHz

80.156 MHz

80.156 MHz

80.156 MHz

4.8 Gbps

Backplane 4.8 Gbps

80.156 MHz
We have also investigated the effect of different slots:

- Low variation both in RJ (<0.2 ps) and DJ (<4.5 ps)
- No visible correlation between the jitter and the distance to the central module is observed.
After optimizing Si5344 PLL, we obtained **8.2 ps jitter** (8.9 ps with the spectrum analyzer in a range of 1 Hz - 10 MHz).
GBTx tests summary

- https://github.com/osahin/jitter-analyzer
- The simulations are done assuming the Dual-Dirac model.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>RJ [ps]</th>
<th>DJ [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single channel - two e-links</td>
<td>7.8 ± 0.1</td>
<td>5.6 ± 4.3</td>
</tr>
<tr>
<td>Two channels - single BE</td>
<td>8.7 ± 0.1</td>
<td>24.2 ± 2.1</td>
</tr>
<tr>
<td>Two channels - two BEs</td>
<td>13.7 ± 0.1</td>
<td>12.7 ± 1.4</td>
</tr>
<tr>
<td>Two channels - two BEs - Si5344 PLL</td>
<td>8.2 ± 0.1</td>
<td>18.6 ± 2.3</td>
</tr>
</tbody>
</table>

![histClock plot](chart.png)