Recent developments in the CBC3: a CMS micro-strip readout ASIC for track-trigger modules at the HL-LHC

Sarah Seif El Nasr-Storey, University of Bristol
[on behalf of the CMS Phase-2 tracker upgrade team]
CMS Outer Tracker Upgrade
High-Luminosity LHC (HL-LHC) Upgrade (Phase II)

• CERN Accelerator complex will be upgraded during 2024-2026 to increase instantaneous luminosity of the LHC by a factor of 5 to $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

• CMS plans to replace the current tracker during the last LHC shut-down before HL-LHC
 • improve radiation resistance, reconstruction efficiency at high pile-up, reduce material budget
 • include tracker information to improve L1 trigger performance and meet target rate of 750 kHz

• Outer tracker made up of pT modules: module sensing element made up of two sensors separated by a few mm along the track direction
 • correlating clusters in the two sensor layers for discrimination between high and low pT tracks
 • stubs [high pT tracks] transmitted off module to the L1 track finding system at 40 MHz
CMS Binary Chip (CBC)
Readout ASIC for Outer Tracker Strip-Strip (2S) modules

- CBC3 (Imperial College, Rutherford Appleton Laboratory) - final prototype of ASIC in 130 nm CMOS. Full description provided by Prydderch et. al in [1]
 - all logic necessary to identify and transmit high pT track primitives (stubs)
 - unsparsified binary readout provides stub data at 40 MHz and read-out data at 750 kHz
 - expect 1000 e- noise, 20 ns peaking time, 50 ns return to baseline

- Even/odd channels on chip used to read-out top/bottom strips with data combined to select high pT tracks (stubs). Communication across the chip boundaries to form stubs
 - full stub information (position, bend) sent to aggregator ASIC (CIC)

[1] CBC3: a CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC
Single Event Upsets Tests using the Light Ion Facility (LIF) at the Cyclotron Resource Centre in Louvain-La-Neuve, Belgium (complete results published by Uchida et al. in [2])

- SEUs showed an order of magnitude improvement on previous prototype [CBC2]

Total Ionizing Dose Tests using the CERN X-ray irradiation facility: 8 chips irradiated at two temperatures (x4 dose rates) while monitoring:

- pedestal and noise, DAC linearity
- current consumption on the power rails supplying V_{DDD} and V_{DDA}

In-beam performance of pT module prototype with CBC3 readout
Radiation Qualification of the CBC3

X-ray irradiation: radiation induced leakage current on digital power rail

- Similar effect to that observed in the other 130 nm CMOS ASICs using linear NMOS transistors (CBC2, ATLAS FEI4):
 - increase only present on the digital side [independent monitoring of power consumption on digital/analogue rails of the ASIC] increase saturates after about 12 kGy of TID, and begins to decrease after that. Does not affect functionality of ASIC.

![Graph showing increase in digital current vs. dose and temperature](image-url)
Radiation Qualification of the CBC3
X-ray irradiation: radiation induced leakage current on digital power rail

• Similar effect to that observed in the other 130 nm CMOS ASICs using linear NMOS transistors (CBC2, ATLAS FEI4):
 • increase only present on the digital side [independent monitoring of power consumption on digital/analogue rails of the ASIC] increase saturates after about 12 kGy of TID, and begins to decrease after that. Does not affect functionality of ASIC.
 • maximum current increases with increasing dose rate and decreasing temperature
Radiation Qualification of the CBC3

X-ray irradiation: radiation induced leakage current on digital power rail

- Similar effect to that observed in the other 130 nm CMOS ASICs using linear NMOS transistors (CBC2, ATLAS FEI4):
 - increase only present on the digital side [independent monitoring of power consumption on digital/analogue rails of the ASIC] increase saturates after about 12 kGy of TID, and begins to decrease after that. Does not affect functionality of ASIC.
 - maximum current increases with increasing dose rate and decreasing temperature
- What can we expect at HL-LHC operating conditions? [2.4 Gy/h and -15°C]
CBC3 Radiation Damage Model

Reminder of damage from ionizing radiation in oxides

• The electron-hole pairs generated by ionizing radiation interact with existing defects and impurities in the oxide (e.g. STI in an NMOS transistor) to introduce:

 • trapped positive charge (Not) in the oxide and interface traps (Nit) at the interface

\[
\begin{align*}
\text{D'}H + h & \rightarrow \text{D'} + p \\
\text{D'O} + h & \rightarrow \text{D'O}^+ \\
\text{SiH} + p & \rightarrow \text{D}^+ + \text{H}_2 \\
\end{align*}
\]
Radiation induced leakage current in linear NMOS transistors
Backhaus parametrization in terms of the effective charge (Not-Nit) build-up

• Radiation induced leakage path due to charge build-up in the STI can be modelled as a parasitic transistor with a transfer characteristic given by

\[I_D \approx 0 \text{ for } V_{GS} < V_{th} \]
\[I_D \approx K_0 (V_{GS} - V_{th})^2 \text{ for } V_{GS} \geq V_{th} \]

• where \(V_{GS} \) and \(V_{th} \) are proportional to the effective charge build up in the silicon (\(N_{ot} - N_{it} \)) and the critical charge (\(N_{th} \)) required to activate the parasitic transistor so that

\[I = I_{pre-irradiation} \text{ for } N_{OT} - N_{IT} < N_{th} \]
\[I = I_{pre-irradiation} + K (N_{OT} - N_{IT} - N_{th})^2 \text{ for } N_{OT} - N_{IT} \geq N_{th} \]

• In linear NMOS transistors:
 • interface traps (\(N_{it} \)) are negatively charged and therefore compensate for the positive charge build-up (\(N_{ot} \))
Radiation induced leakage current in linear NMOS transistors

Backhaus parametrization in terms of the effective charge (Not-Nit) build-up

- Radiation induced leakage path due to charge build-up in the STI can be modelled as a parasitic transistor with a transfer characteristic given by

\[I_D \approx 0 \text{ for } V_{GS} < V_{th} \]
\[I_D \approx K_0 (V_{GS} - V_{th})^2 \text{ for } V_{GS} \geq V_{th} \]

- where \(V_{GS} \) and \(V_{th} \) are proportional to the effective charge build up in the silicon (\(N_{ot} - N_{it} \)) and the critical charge (\(N_{th} \)) required to activate the parasitic transistor so that

\[
I = I_{pre-Irradiation} \text{ for } N_{OT} - N_{IT} < N_{th} \\
I = I_{pre-Irradiation} + K(N_{OT} - N_{IT} - N_{th})^2 \text{ for } N_{OT} - N_{IT} \geq N_{th}
\]

Used to fit measured current increase

- In linear NMOS transistors:
 - interface traps (Nit) are negatively charged and therefore compensate for the positive charge build-up (Not)
• Global fit of measured increase in digital current for all chips irradiated at a fixed temperature:

Result of global fit shown for two of the chips irradiated at -19°

Chip : A -19°
~ 23 kGy/h

Chip : C -19°
~ 0.1 kGy/h

Fit parameters describing effective charge build-up

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{D}</td>
<td>dose rate of ionizing radiation</td>
</tr>
<tr>
<td>$d_{critical}$</td>
<td>critical dose at which parasitic transistors are activated</td>
</tr>
<tr>
<td>f_{OT}</td>
<td>probability of a hole being trapped in a deep trap in the STI</td>
</tr>
<tr>
<td>τ_{OT}</td>
<td>de-trapping rate of trapped holes in the STI</td>
</tr>
<tr>
<td>f_P</td>
<td>probability of a hole being trapped by a hydrogen containing defect</td>
</tr>
<tr>
<td>f_I</td>
<td>probability of an available dangling bond capturing a free proton</td>
</tr>
</tbody>
</table>
CBC3 Radiation Damage Model

Dose rate dependance of current increase [at a fixed temperature]

- Fit results used to parametrize dose-rate dependance of model parameters and extrapolate current increase to lower dose-rates

1) Global fit

2) Parametrization of dose-rate dependance

3) Extrapolate to lower dose-rates
Using radiation damage model to extrapolate to HL-LHC conditions

Expected increase in current consumption of CBC3

- Predicted lowest expected temperature on the 2S modules is \(\sim -15^\circ C \):
 - can use results from irradiations at \(-19^\circ C\) and \(5^\circ C\) to set bounds on the expected increase per CBC for a 2S module [parameters extracted from fit used to predict effect at lower dose rates]
Using radiation damage model to extrapolate to HL-LHC conditions

Expected increase in current consumption of CBC3

- Predicted lowest expected temperature on the 2S modules is \(\sim -15^\circ\text{C} \):
 - can use results from irradiations at \(-19^\circ\text{C}\) and \(5^\circ\text{C}\) to set bounds on the expected increase per CBC for a 2S module [parameters extracted from fit used to predict effect at lower dose rates]
 - dose rate at HL-LHC taken from FLUKA simulation of the CMS PhaseII detector

no safety factor applied to dose rate

CMSphase2_pp_7TeV_v3.7.0.0_FLUKA:
Fluka Simulated Dose in Gy [*]
Using radiation damage model to extrapolate to HL-LHC conditions

Expected increase in power consumption of 2S modules

- Results from irradiations at -19°C used to set upper limit on the expected increase in power consumption of a 2S module at the dose rates expected at the HL-LHC assuming:
 - x16 CBCs powered by a single service hybrid on a 2S module
 - operating voltage of 1.25 V per CBC
 - x3 safety factor applied to dose rate from FLUKA simulation of the CMS PhaseII detector

Predicted increase in power consumption of 2S modules in the Outer Tracker barrel

- Expected power consumption of a 2S module: 5000 mW
- Radiation induced leakage has a < 1% impact on the power consumption of a 2S module
Radiation Qualification of the CBC3

CBC3 Testing Campaign in 2017

- Single Event Upsets Tests using the Light Ion Facility (LIF) at the Cyclotron Resource Centre in Louvain-La-Neuve, Belgium (complete results published by Uchida et. al in [2])
 - SEUs showed an order of magnitude improvement on previous prototype [CBC2]
- Total Ionizing Dose Tests using the CERN X-ray irradiation facility: 8 chips irradiated at two temperatures (x4 dose rates) while monitoring:
 - pedestal and noise, DAC linearity
 - current consumption on the power rails supplying V_{DDD} and V_{DDA}
- In-beam performance of pT module prototype with CBC3 readout
Prototype based on a 2CBC3 Front End Hybrid (FEH)

- First prototypes (CERN DT) using 50 mm long n-on-p sensors (200 μm active thickness silicon) and a 2CBC3 flexible hybrid (CERN EP-ESE)

Mini-module design

Mini-module @ FNAL BT

first opportunity to test bump-bonded CBC3s
all previous measurements performed on wire-bonded chips
In beam performance of 2CBC3 mini-module
Fermilab Test Beam Facility : CMS Pixels Phase0 Telescope

- 120 GeV proton beam (primary beam) bunched at 54 MHz (4.2 s spill every minute)
- FNAL Beam Telescope used to reconstruct tracks pointing towards the 2S prototype
 - PSI46 analogue chip based readout [100x150 µm² pixel cells : 80 rows and 52 columns]
 - Resolution of ~ 8µm in both directions [at nominal location]
 - 1.6x1.6 cm² coverage (size of sensor ~ 2.2x5 cm²)

- Mini-module (2S-prototype) placed in the center of the telescope on a rotation stage:
 - rotating the mini-module about y mimics the behaviour of high momentum tracks in a magnetic field
In beam performance of 2CBC3 mini-module
Nominal threshold [(~3.2e3 electrons from the pedestal (~4.2σ Noise))] and 0° tilt

• Resolution and cluster detection efficiency at nominal threshold on one of the two sensor planes:
 • resolution consisted with 90 μm pitch strips (expected binary resolution of ~26 μm)
 • cluster detection efficiency (>99%) uniform across module

Residual distribution for different size clusters

σ distribution for all clusters

26.69 ± 0.061 μm
In beam performance of 2CBC3 mini-module
Nominal threshold [~3.2e3 electrons from the pedestal (~4.2\sigma_{Noise})]

- Stub turn on curves measured for different correlation windows
- (as expected) pT cut-off decreases as the size of the correlation window is increased
- cut-off seems to match expected* value well: 2.13 GeV, 1.72 GeV, 1.45 GeV

*equivalent pT @ 3.8 T and 71.5 cm from rotation angle (\theta)

\[p_T = \frac{0.57R}{\sin \theta} \]
Conclusions

CBC3 : a readout ASIC for Outer Tracker Strip-Strip (2S) modules

• Qualification of CBC3 (TID, SEUs) for HL-LHC levels completed in first half of 2017
• Design changes (rel. to CBC2) improved the radiation hardness of the CBC3
• Data taken during qualification used to build a radiation damage model to parameterize the radiation induced current increase on the digital side of the ASIC
 • model used to predict impact of radiation on the power consumption of a single 2S module at HL-LHC operating conditions: max. expected current increase in CBCs would increase power consumption of a 2S module by <1%
• Successful test beam at FNAL with the first 2CBC3 based 2S prototype performed at the end of 2017
Back-up Slides
Radiation Qualification of the CBC3
Summary of test campaigns conducted in first half of 2017

- Single Event Upsets Tests using the Light Ion Facility (LIF) at the Cyclotron Resource Centre in Louvain-La-Neuve, Belgium (complete results published by Uchida et. al in [2])
 - no SEUs observed in pipeline data and logic cells
 - SEUs showed an order of magnitude improvement on previous prototype [CBC2]
 - ~1.5 bit flips/day at HL-LHC [a few % of the 2640 I2C bits are related to global configuration registers] → reconfiguration upon error detection possible

<table>
<thead>
<tr>
<th>Type of Cell</th>
<th>ϕ_{LIF} [cm$^{-2}$s$^{-1}$]</th>
<th>$\phi^*_{\text{HL-LHC}}$ [cm$^{-2}$s$^{-1}$]</th>
<th># observed bit flips</th>
<th>Time [hrs]</th>
<th>σ_{SEU} [x 10$^{-11}$ cm$^{-2}$]</th>
<th>$\text{ER}_{\text{HL-LHC}}$ [bit flips/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline Data</td>
<td>2.2E+08</td>
<td>7.45E+06</td>
<td>0</td>
<td>10.7</td>
<td>< 0.027</td>
<td>< 0.008</td>
</tr>
<tr>
<td>Pipeline Logic</td>
<td>2.2E+08</td>
<td>7.45E+06</td>
<td>0</td>
<td>1.4</td>
<td>< 0.21</td>
<td>< 0.054</td>
</tr>
<tr>
<td>I2C Registers</td>
<td>2.2E+08</td>
<td>7.45E+06</td>
<td>25</td>
<td>12.4</td>
<td>0.27 ± 0.05</td>
<td>0.069 ± 0.013</td>
</tr>
</tbody>
</table>

- Total Ionizing Dose Tests using the CERN X-ray irradiation facility (EP-ESE-MIC)
 - 8 chips irradiated at two temperatures (4 dose rates) while monitoring:
 - current consumption on the power rail supplying V_{DDD} and V_{DDA}
 - pedestal and noise

[∗] x3 safety factor applied to flux
Radiation Qualification of the CBC3
X-ray irradiation: radiation induced leakage current on digital power rail

- Similar effect to that observed in the CBC2 and ATLAS FEI4 (130 nm CMOS):
 - increase only present on the digital side [independent monitoring of power consumption on digital/analogue rails of the ASIC] increase saturates after about 12 kGy of TID, and begins to decrease after that

![Graphs showing increase in digital current vs dose and dose rate]
CBC3 vs. CBC2 layout

CBC2 layout

C4 layout, 250um pitch, 19 columns x 43 rows

30 inter-chip signals (15 in, 15 out), top and bottom gives continuity across chip boundaries

right-most column wire-bond (for wafer probe test)
 access to:
 - power
 - fast control
 - I2C
 - outputs

prototype powering features retained
 CERN bandgap, LDO for analog powering, same as prototype
 improved DC-DC switched capacitor circuit (CERN)
 slower switching edges & rad-hard layout

chip submitted for fabrication July 2012

 wafers back January 2013
 wire-bondable (other users) and C4 processed (CBC2)

Davide Braga,
Mark Pryderch,
Peter Murray
(RAL)
CBC3 vs. CBC2 layout

CBC3

- test pulse circuit
- I/O to neighbour
- DLL
- bend LUT
- data assembly
- L1 counter & FIFO
- 512 deep pipeline & O/P buffer
- bandgap
- I2C & biases
- 10b DAC for VCTH
- LDO
- I/O to neighbour

Final layout picture for reference

20 columns, 43 rows
(1 more column than CBC2)

5.25 mm x 11 mm
CBC3 Irradiation Tests Summary

Temperature and dose-rate dependence of pedestal/noise

• Pedestal (averaged across all 254 CBC channels) during irradiation [1.25 V]

 • 6 chips irradiated at 3 different dose rates, and 2 different temperatures

![Graphs showing mean pedestal vs dose and dose rate for different temperatures]

[Chips : A1, B1, C1]

[Chips : A2, B2, C2]
CBC3 Irradiation Tests Summary
Temperature and dose-rate dependence of pedestal/noise

- Noise (averaged across all 254 CBC channels) during irradiation \[1.25 \text{ V} \]
 - 6 chips irradiated at 3 different dose rates, and 2 different temperatures
CMS Phase 2 Tracker Upgrade
Level1 (L1) Triggering at the HL-LHC

- Two level trigger system currently implemented in CMS
 - Level 1 (L1) hardware trigger using information from calorimeters and muon detectors [design specification : 100 kHz, latency of 3.2 μs]
 - High Level Trigger (HLT) software trigger including information from the tracker
- Increase in luminosity will lead to increased production rates and pile-up [53 at the highest instantaneous luminosity reached in 2016 \rightarrow 200 at HL-LHC] which poses a challenge for the current L1 trigger system. Therefore upgrade of the L1 system also expected for HL-LHC
 - target specification for L1 trigger for HL-LHC is 750 kHz and a latency of 12 μs
 - include tracker information to improve L1 trigger performance

- sharper turn-on curves
- reduced trigger rates
CMS Phase 2 Tracker Upgrade
Level1 (L1) Triggering at the HL-LHC

- All tracker data cannot be read out at bunch crossing frequency (40 MHz) therefore a reduction in the amount of data on the module used for L1 tracking is required which has led to the pT module concept:
 - module sensing element made up of two sensors separated by a few mm along the track direction
 - correlating clusters in the two sensor layers allows discrimination between high and low pT momentum tracks (charged particles bend in CMS’s 3.8T field)
 - stubs [high pT tracks] can then be transmitted off module to the L1 track finding system at 40 MHz
 - tracks are combined in the L1 trigger system with calorimeter and muon information
CBC3 Irradiation Tests Summary

Lessons learned from the CBC2 Irradiations: Radiation induced leakage

- Ionizing dose tests on CBC2 showed an initial spike in the current consumption of the chip:
 - identified as radiation induced leakage in the pipeline logic
 - non-enclosed NMOS transistors in pipeline suspected
 - effect also manifests as failure of some channels to respond to the test pulse

![Graph showing current consumption over time](image)

- Radiation hardness of pipeline SRAM block in the CBC3 improved by:
 - replacing NMOS read and write access transistors by more rad hard PMOS devices
 - replacing NMOS pull-down transistors with enclosed NMOS devices
CBC3 X-ray Irradiation:
Digital Current, Un-cooled, 20 kGy/hr, max. dose of 350 kGy

- Similar effect to that observed in the CBC2:
 - increase only present on the digital side
 - increase in the digital current observed near the start of the irradiation (dose of ~ 2.3 kGy)
 - increase saturates after about 12 kGy of TID, and begins to decrease after that

Changes implemented in the CBC3 have improved the radiation tolerance, however:
- radiation induced leakage still present in the ASIC
CBC3 Irradiation Tests Summary

Lessons learned from the CBC2 Irradiations: SEU sensitivity

- Single Event Upset tests on the CBC2 showed that the I2C registers were susceptible to SEUs:
 - triplicated I2C registers used in the CBC2
 - but with insufficient separation (2.4 µm) between the three nodes of the cell
 - cells susceptible to simultaneous upsets in multiple nodes
CBC3 Irradiation Tests Summary

Lessons learned from the CBC2 Irradiations: SEU sensitivity

- Single Event Upset tests on the CBC2 showed that the I2C registers were susceptible to SEUs:
 - triplicated I2C registers used in the CBC2
 - but with insufficient separation (2.4 µm) between the three nodes of the cell
 - cells susceptible to simultaneous upsets in multiple nodes

Sensitivity of the CBC3 to SEUs improved by:

- replacing triplicated I2C registers with Whitaker latches
 - n+ diffusions used to store 0’s (an SEU can only change their state from 1 → 0)
 - p+ diffusions used to store 1’s (an SEU can only change their state from 0 → 1)
CBC3 Irradiation Tests Summary
SEU Testing of the CBC3: SEU Rates in Pipeline Logic

- 1.4 hours of beam time dedicated to measuring the SEU rate in the data stored in the CBC3’s pipeline.
 - no errors which can be attributed to SEUs
 - upper limit placed on expected SEU cross-section using LIF data: $2.1 \times 10^{-12} \text{ cm}^2$
 - upper limit placed on error rate expected at HL-LHC: $1.5 \times 10^{-5} \text{ s}^{-1} \text{ per chip} \rightarrow 1.3 \text{ errors per day}$

$$\sigma_{SEU} = \frac{ER \ [\text{bit flips/s}]}{\phi \ [\text{cm}^{-2} \text{s}^{-1}]}$$

$$ER \ [\text{bit flips/s}]_{\text{Upper Limit}} = \frac{-ln(1 - CL)}{t_{\text{no errors}}}$$
CBC3 Irradiation Tests Summary
SEU Testing of the CBC3 : SEU Rates in I2C Registers

- 12.4 hours of beam time dedicated to measuring the SEU rate in the configuration bits stored in the CBC3’s I2C registers.
 - 25 bit flips observed in CBC3 in the beam
 - measured SEU cross-section using LIF data : $2.6 \times 10^{-12} \text{ cm}^2$
 - error rate expected at HL-LHC : $1.8 \times 10^{-5} \text{ s}^{-1} \text{ per chip} \rightarrow 1.5 \text{ errors per day per chip}$

$$\sigma_{\text{SEU}} = \frac{\text{ER [bit flips/s]}}{\phi \text{ [cm}^{-2}\text{s}^{-1}]}$$
CBC3 Irradiation Tests Summary
SEU Rates in I2C Registers : CBC3

- Why are we still seeing SEUs in the I2C registers?
 - RAL identified some nodes of the I2C registers that might still be sensitive to SEUs
 - Write and Reset nodes of the I2C registers

- Write (Wr)
 - Causes the storage cell to flip to the last write transaction data left in the bus

- Reset (RN)
 - Causes the storage cell to flip to the default.
CBC3 Irradiation Tests Summary

Information on tracker layout from TDR

TBPS
- **Layer**: 1, 2, 3
- **Average radius [mm]**: 248.1, 371.7, 522.7
- **z coverage [mm]**: ±1203.1, ±1203.5, ±1201.8
- **Total**
- **N_{planks}**: 18, 26, 36
- **N_{modules}**: 558, 910, 1404
- **Total**: 2872

TB2S
- **Layer**: 1, 2, 3
- **Average radius [mm]**: 687.0, 860.0, 1108.0
- **z coverage [mm]**: ±1176.6, ±1176.6, ±1176.6
- **Total**
- **N_{ladders}**: 48, 60, 78
- **N_{modules}**: 1152, 1440, 1872
- **Total**: 4464

TEDD
- **Double-disc**: 1, 2, 3, 4, 5
- **Average z position [mm]**: ±1311.8, ±1550.0, ±1853.4, ±2216.2, ±2650.0
- **Total**
- **N_{rings}**: 15, 15, 12, 12, 12
- **$N_{\text{modules (per z side)}}$**: 644, 644, 564, 564, 564
- **Total**: 5960