

Cold Electronics system for ProtoDUNE-SP LAr-TPC

Maura Spanu, Brookhaven National Laboratory on behalf of ProtoDUNE-SP collaboration

14th Pisa Meeting on Advanced Detectors – May - June 2018

Brookhaven Science Associates

Deep Underground Neutrino Experiment (DUNE)

ProtoDUNE ~1% of DUNE ~ 400 tons LAr (Fiducial mass) ~4x10 kton LAr

- Single-Phase LAr TPC prototype:
 - 6 full-size (6x2.5 m²) Anode Plane Assemblies (APAs)
 - 3 Cathode Plane Assemblies (CPA)
 - 2 x 3.6m drift regions
 - Total of 15,360 TPC sense wires and electronic channels
- Key test of design concepts and construction:
 - TPC sense wire planes
 - Cold electronics integral to wire planes
 - Cryostat feedtroughs to integral warm interface (WIEC)
 - Scintillator SiPM Photon Detectors (PD)
 - HV system, field cage and cathode, for long drift (3.6m)

R. Acciarri - ProtoDUNE: prototyping the ultimate medium – high energy range (MeV - GeV) neutrino detector

protoDUNE-SP Goals

- Prototyping production and installation procedures for DUNE far Detector Design [task of the ongoing effort]
- Validate design from perspective of basic detector performance
- Accumulate test-beam data to understand/calibrate response of detector to different ptcl. species
- Demonstrate long term operational stability of the detector

What a great team!

Project approved December 2015, TPC installation completed on Apr 2018, data taking End Summer-Fall 2018 → results available before the **2019 DUNE FD** Technical Design Review

1 Jun 2018

Integrated LAr-TPC Readout

M. Spanu - PM 2018

Noise (ENC) vs TPC Sense Wire and Signal Cable Length for CMOS at 300K and 89K

Cold vs. Warm CMOS: static characteristics vs. T

At 77-89K, charge carrier **mobility** in silicon <u>increases</u>, **thermal fluctuations** <u>decrease</u> with kT/e, resulting in a <u>higher gain</u>, <u>higher g_m/I </u>, <u>higher speed</u> and <u>lower</u> noise.

ProtoDUNE-SP Cold Electronics

Front End Electronics production at BNL

- CE boxes were assembled at Brookhaven National Laboratory (BNL) and shipped to CERN after a comprehensive set of QA/QC tests.
- Integration tests in LN2 were performed at BNL by a 40% of DUNE APA (2.8 m x 1.0 m) in a smaller cold box.

CE installation on Anode Plane Assembly (APA)

CE boxes installation on APA

Cabling on cable tray

Installed CE boxes

Cable hook up to feedthrough

CE boxes test after installation on APA

A Cold Box for testing APAs

Cold box allows integral test of electronics and photodetectors on production APAs

- Follows the same power and grounding rules for the detector electronics
- Incorporates a full scale warm feed-through and use cables and readout identical to the production system
 Warm Interface

FEMB readout through **optical links** from WIB on top of the signal feed-through allows a **real time study** of detector performance in cold box tests and during installation of APAs.

APA Test in cold Nitrogen gas

APA being moved into Cold Box

 Internal FE ASIC temperature sensor is readout through a scope

M. Spanu - PM 2018

Overall ENC Performance - Warm vs. Cold

APA4 (2018-03)

Done by local diagnostic function

(every channel uses its own gain calibrated by FPGA-DAC)

Noise Measurement

Noise Measurement

ProtoDUNE-SP — Present and Future

After the cold test, all **6 APAs** and **3 CPAs** have been installed into the ProtoDUNE-SP cryostat

- Electronics and photodetectors have been tested before and after the installation on APAs
- All CE and PD cables are routed though the chimney out of the cryostat and connected to the corresponding crate

What's next?

The detector is assembled, so now let's make it work!

- Installation CRT, purity monitors, temperature gradient monitors, HV feedthrough (ongoing now)
- Purge, cooldown, fill the detector (July August)
- Turn on the detector and make it work stably, smoothly, and noise free (end of August)
- Beam Run (August 29th → November 11th)

Summary

- Readout electronics developed at BNL for low temperatures (77K-89K) is an enabling technology for noble liquid detectors for neutrino experiments
- ProtoDUNE-SP project at the CERN Neutrino Platform facility will provide validation of LAr-TPC technology, detector response and longterm stability for DUNE FD optimization. The TPC installation was completed on Apr 2018
- Different expert teams are now at work on the activation procedures of the different TPC components
- We're almost ready for the beam run... Looking forward to see the results!

References

- S. Li, J. Ma, G. De Geronimo, H. Chen, and V. Radeka, "LAr TPC electronics CMOS lifetime at 300 K and 77 K and reliability under thermal cycling," *IEEE Trans. Nuclear Science*, vol. 60, no. 6, pp. 4737-4743, Dec. 2013.
- G. De Geronimo, A. D'Andragora, S. Li, N. Nambiar, S. Rescia, E. Vernon, H. Chen, F. Lanni, D. Makowiecki, V. Radeka, C. Thorn, and B. Yu, "Front-end ASIC for a liquid argon TPC," *IEEE Trans. Nuclear Science*, vol. 58, no. 3, pp. 1376-1385, June 2011.
- J. R. Hoff, R. Aroar, J. D. Cressler, G. W. Deptuch, P. Gui, N. E. Lourenco, G. Wu, and R. J. Yarema, "Lifetime studies of 130 nm nMOS transisors intended for long-duration, cryogenic high-energy physics experiments," *IEEE Trans. Nuclear Science*, vol. 59, no. 4, pp. 1757-1766, Aug. 2012.
- V. Radeka, H. Chen, G. Deptuch, G. De Geronimo, F. Lanni, S. Li, N. Nambiar, S. Rescia, C. Thorn, R. Yarema, and B. Yu, "Cold electronics for "giant" liquid argon time projection chambers". *1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment*, volume 308 of *Journal of Physics: Conference Series*, 2011.

0

SIME

Backup slides

DUNE Far Detector

- APA, CPA & front end cold electronics system for single phase DUNE far detector
- DUNE 10 kt Far Detector
 - <u>384,000 channels</u>
 - 24,000 FE ASICs/24,000 ADC ASICs
 - 6,000 COLDATA ASICs
 - 3,000 Front End Mother Board assemblies M. Spanu - PM 2018

ProtoDUNE SP facility – EHN1 at CERN

H4 VLE Beam line

CMOS Cold ASICs Upgrades Implemented

6.0 mm

• FE ASIC

- Built-in 6-bit DAC for calibration pulse generation
- Built-in analog monitoring output for debug
- Address pole-zero cancellation and drive capability in buffer-off mode
- Add higher bias current (1nA and 5nA) options and smart reset
- Revise BGR start-up circuit and increase ESD protection on I/O
- Will be used to instrument SBND and ProtoDUNE-SP
- ADC ASIC
 - Implement COLDATA (DUNE baseline design by FNAL, *prototype expected in FY19*) compatible interface and FE ASIC compatible configuration
 - Address the early saturation and roll-back
 - Implement power-on default configuration and extend soft-control functions
 - Revise BGR start-up circuit and increase ESD protection on I/O
 - Improve ADC INL/DNL \rightarrow not completely resolved
 - Will be used to instrument ProtoDUNE-SP
 - SBND is exploring COTS ADC option
 - Cold ADC ASIC development is very challenging given the *amplified mismatch* error and *inaccurate simulation model* in cryogenic temperature

APA1 - Pulse response

Inject bipolar pulses from electronics calibration circuit on FEMB

APA1 (2017-11)

Lowest temperature reached TT0907 ~173K FEASICs ~ 183K

1. Uniform gain (80 e-/bin) is applied for calculating noise of all channels 2. Bias voltages were off

APA3(2018-02)

2. Bias voltages were off

Lowest temperature reached TT0907 ~ **150K**

1. Uniform gain (77 e-/bin) is applied for calculating noise of all channels

APA4(2018-03)

Lowest temperature reached TT0907 ~ **160K**

Diagnostics on Abnormal Channels (18 Out Of 15360)

APA2 (2018-01)

MicroBooNE long term stability of average MIP response, incl. argon purity variations

FE ASICs in LAr: (gain) variations <0.2% over >2years

MICROBOONE-NOTE-1013-INT