Spherical proportional counters: development improvement and understanding.

June 1st 2018

Alexis Brossard News-G collaboration

DE LA RECHERCHE À L'INDUSTRIE

-Detector Principle

- -Sensor development
- -Gas effects
- -Laser
- -Results and future

Detector principle

-1 Particle ionizes gas.

-2 Primary electrons drift toward the sensor.

-3 Close to the sensor, secondary ion/electron pairs are produced.

-4 Signal is induced by the motion of secondary ions.

-5 The signal is processed by a preamplifier and digitized.

Possibility to use large range of target mass.
Sub-keV energy threshold down to single electron.
Identification of point like energy deposition.

-Dark matter search -Neutrino physics

Detector principle

Detector principle

30 cm diameter sphere. Gas circulation and filtration Residual gas analyser.

2 mm sensor. 98% Ar + 2% CH_4 at 500 mbar

Calibration: Americium/Beryllium ⁵⁵Fe ³⁷Ar Solid state laser

from ²⁴¹Am -> α + ²³⁷Np*

Sensor development

Single electrode sensor:

What we expect: Stable with time Homogenous response

Sensor development

Instability

Charging up

Fe 55 X-ray source 90 deg Amplitude 5: histo 20 amplitude ve date 90 deg 180 deg Date 180 deg Inhomogeneous response Rise Time and and price on

Amplitude

The bakelite resistive umbrella

<u>Bakelite</u> Chemical Formula: (C6-H6-O.C-H2-O)x

Thermosetting phenol formaldehyde resin, formed from a condensation reaction of phenol with formaldehyde.

Advantages:

- Bakelite resistivity up to ~ 10^12 .cm
- Compact and homogenous material

Sensor development

30 cm diameter sphere / Gas mixture: Ar + 2% CH_4 @ 500 mbar Source: ³⁷Ar Electronic capture released 0.27 or 2.8 keV

Sensor development

Rise time vs amplitude distribution

Ar-37 events recorded with a 30-cm SPC filled with 500 mbar of Ar + 2 % CH4.

Two millimetre ball with HV1 = 2020 V and HV2 = -120 V

-Amplification is driven by the ball size. Smaller ball gives higher amplification.

-Electric field far from the sensor is proportional to sensor radius. In large diameter sphere, a too small sensor gives a too weak electric field at large distance, then electron attachment induce a loss of signal.

Achinos sensor

 $E(r) \approx \frac{V}{r^2} r_{anode}$

-Amplification is driven by size of each small ball.

-Volume electric field is driven by Achinos structure

Gas effects

O2 contamination induces electron trapping. Primary electron emitted at large radius are more trapped inducing rise time vs amplitude correlation. This can be avoid using a purifier and circulation.

Laser calibration measurements

Polya distribution (SER) parameter

~ 0

Applications

with laser:

- Drift time and diffusion time measurements
- Attachment rate measurements
- Monitoring of the stability of the detector response
- Single electron response parametrizaton
- Absolute calibration [no. of PEs]

with laser + radioactive source :

- Fano factor measurements
- W-value measurements

Analysis Methodology

Laser calibration measurements

Parametrization of the Single Electron Response (SER)

Results and future

SEDINE 60 cm detector operating at LSM

First results for NEWS-G at LSM: NEWS-G collaboration, Astropart. Phys. 97, 54 (2018), doi: 10.1016/j.astropartphys.2017.10.009

NEWS-G at SNOLAB to be installed during summer 2019.

140 cm detector to be operated atSNOLABShielding:40 cm PE22 cm VLA Pb3 cm archaeological lead

NEWS-G collaboration 2018

Queen's University Kingston - G Gerbier, P di Stefano, R Martin, G Giroux, T Noble, D Dunrford, S Crawford, M Vidal, A Brossard, P Vazquez dS, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier, A Ronceray, P Gros, J Morrison, C Ne Copper vessel and gas set-up specifications, calibration, project management Gas characterization, laser calibration, on smaller scale prototype Simulations/Data analysis IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay -I Giomataris, M Gros, C Nones, I Katsioulas, T Papaevangelou, JP Bard, JP Mols, XF Navick, Sensor/rod (low activity, optimization with 2 electrodes) Electronics (low noise preamps, digitization, stream mode) DAQ/soft LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry - F Piquemal, M Zampaolo, A DastgheibiFard Low activity archeological lead Coordination for lead/PE shielding and copper sphere Thessaloniki University – I Savvidis, A Leisos, S Tzamarias Simulations, neutron calibration Studies on sensor LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble - D Santos, JF Muraz, O Guillaudin Quenching factor measurements at low energy with ion beams Pacific National Northwest Lab- E Hoppe, R Bunker ٠ Low activity measurements, Copper electroforming RMCC (Royal Military College Canada) Kingston – D Kelly, E Corcoran ٠ 37 Ar source production, sample analysis SNOLAB –Sudbury – P Gorel Calibration system/slow control University of Birmingham- K Nikolopoulos, P Knights Simulations, analysis, R&D Associated labs : TRIUMF - F Retiere,

THANK YOU

Backup Slides

Laser calibration

Gas effects

Amplitude vs rise time distribution before and after O_2 injection:

O2 contamination induces electron trapping. Primary electron emitted at large radius are more trapped inducing rise time vs amplitude correlation. This can be avoid using a purifier and circulation.

Influence of HV on second electrode

Resolution on the 2.8 keV peak vs ratio HV2/HV1

