

The MPGD-Based Photon Detectors

for the upgrade of COMPASS RICH-1

and beyond

S. Dalla Torre

INFN - TRIESTE

on behalf of the COMPASS RICH group

COMPASS RICH-1

COMPASS Spectrometer dedicated to h physics

NIM A 577 (2007) 455 NIM A 779 (2015) 69

NIM A 553 (2005) 215; NIM A(2008) 371; NIM A(616) (2010) 21; NIM A 631 (2011) 26

Top photon detectors

MAPMTs coupled to

MAPMTs coupled to lens telescopes

MWPCs+CsI (from RD26):

successful but performance limitations, in particular for the 4 central chambers

ORRE (INFN

PHOTON DETECTORS so far

Reduced wire-cathode gap because of :

- Fast RICH (fast ion collection)
- Reduced MIP signal
- Reduced cluster size
- Control photon feedback spread

MWPCs with CsI photocathode, the limitations

- Severe recovery time (~ 1 d) after a detector discharge
 - Ion accumulation at the photocathode
- Feedback pulses
 - Ion and photons feedback from the multiplication process
- Ageing (QE reduction) after integrating a few mC / cm²
 - Ion bombardment of the photocathode
- → Low gain: a few times 10⁴ (effective gain: <1/2)
- → "slow" detector

To overcome the limitations:

- Less critical architecture
- suppress the PHOTON & ION feedback
- use intrinsically faster detectors
- → MPGDs

DETECTOR ARCHITECTURE

Following a 7-year R&D

60 x 60 cm² detectors formed by 30 x 60 cm² active elements

THGEM, detail

77% surface for Csl coating

Bulk MICROMEGAS, detail

Micromesh support pillars (diam. 0.4 mm, pitch 2 mm

> 8‰ dead area)

THGEMs bock photon feedback

Resistive MICROMEGAS by bulk technology

- traps the ions
- ~100 ns signal formation

Silvia DALLA

HV is applied here through a resistor (mesh @ ground)

Signal readout from this pad

PCB

Readout from this pad

COMPONENT QA in a nutshell

Measurement of the raw material thickness before the THGEM Production, accepted:

± 15 μ m ↔ gain uniformity σ < 7%

THGEM polishing with an "ad hoc" protocol setup by us: >90% break-down limit obtained

X-ray THGEM test to access gain uniformity (<7%) and spark behaviour

X-ray MM test to access integrity and gain uniformity (<5%)

CsI coating for THGEMS

QE uniformity

- 3 % r.m.s. within a photocathode
- 10 % r.m.s. among photocathodes
- mean value: 93% of reference

HV CONTROL

In total 136 HV channels with correlated values

- Hardware, commercial by CAEN
- HV control

HV Status

- Custom-made (C++, wxWidgets)
- Compliant with COMPASS DCS (slow control)
- "OwnScale" to fine-tune for gain uniformity
- V, I measured and logged at 1 Hz
- Autodecrease HV if needed (too high spark-rate)
- User interaction via GUI
- Correction wrt P/T to preserve gain stability

Gain stability vs P, T:

- G = G(V, T/P)
- Enhanced in a multistage detector
- $\Delta T = 1^{\circ}C \rightarrow \Delta G \approx 12 \%$
- Δ P = 5 mbar $\rightarrow \Delta$ G ≈ 18 %

THE WAY OUT:

Compensate T/P variations by V
 → Gain stability at 5% level

MAIN DETECTOR FIGURES

- Current sparks in THGEMs
 - Rate < 1/h per detector
 - Recovery time: ~ 10 s
 - Fully correlated between the two layers
 - Mild dependence on beam intensity
- Current sparks in MICROMEGAS
 - Induced by THGEMs
 - Recovery time: ~1 s
- Ion backflow: ~ 3% level
- Noise: 900 electron equivalent (r.m.s.)
 - Channel C: 4pF

RINGS !!!

Correlation between photons and trajectories

From Event Display

- Ring centre calculated from particle trajectory
- Detected photoelectrons : hits on the sensors

For reference:

$$\theta$$
 (β = 1) = 52.5 mrad

INTRINSIC SPACE RESOLUTION

Residual distribution for individual photons (preliminary π -sample):

Silvia DALLA TORRE

GAIN FROM A PURE PHOTON SAMPLE

From electronic noise → Threshold

From threshold & gain → photoelectron detection (effective) efficiency > 80%

For comparison, in MWPCs: ~50-60%

from the extrapolated exponential an estimate of the noise level under the signal:
~10%

DETECTED PHOTONS per RING

DETECTED PHOTONS per RING

PERSPECTIVES OF h-PID @ HIGH p

h-PID at high p (> 6-8 GeV/c)

- Required for physics at the future ELECTRON-ION COLLIDER (EIC)
- Collider-specific issues
 - shorter radiator to control setup sizes (advantages also for fixed target)
 namely more detected photons per unit radiator length
 - → increased resolution
 - Operation in magnetic field
- An interesting option
 - Exploit the extremely far VUV region (~120 nm) with a windowless
 RICH and gaseous photon detectors, test beam @ Fermilab

IEEE NS 62 (2015) 3256

MOVING FURTHER WITH MPGD-based PDs

In the frame of

- Generic R&D for EIC eRD6
- INFN RD_FA

resistive MM with small pad size $O(10 \text{ mm}^2)$

See also a dedicated poster by J. Agarwala

Issues related to hybrid MPGD-based PDs operated in C-F atmosphere:

- photoelectron extr
- detector gain
- ageing

GEM vs THGEM as photocathodes

bton detectors

Silvia DALLA TORRE

A VERY RECENT NEW OPTION FOR THE R&D

Csl, the only standard photoconverter compatible with gaseous atmospheres, has problematic issues, main ones:

- It does not tolerate exposure to air (H₂O vapour, O₂)
- Ageing by ion bombardment

Antonio Valentini et al. – INFN Bari Italian patent application n. 102015000053374

- Photocatodes: diamon film obtained with Spray Technique making use of hydrogenized ND powder
 - Spray technique: T ~ 120° (instead of >800° as in standard techniques)

Coupling of ND photoconverter and MPGDs?

an exiting perspective with several open questions

- Compatibility, performance with gas ?
- Radiation hardness ?
- Ageing ?

L.Velardi, A.Valentini, G.Cicala al., Diamond & Related Materials 76 (2017) 1

SUMMARIZING ...

- MPGD-based photon detectors ACCOMPLISH THEIR MISSION in COMPASS RICH-1
 - From preliminary characterization exercises:
 stable gain, large gain, good number of detected photoelectrons
- Technological achievement for the FIRST TIME:
 - single photon detection is accomplished by MPGDs
 - THGEMs used in an experiment
 - MPGD gain > 10k in an experiment
- MPGD-based photon detectors have a <u>mission</u> in the future of hadron physics

THANK YOU

MORE INFORMATION

HANDLING THE VUV DOMAIN

Csl gasous sensors used in several Cherenkov detectors

COMPASS RICH-1, gas transparency

- -gas cleaning by on-line filters,
- -separate functions:
 - -Cu catalyst, ~ 40°C for O₂
 - -5A molecular sieve, ~ 10°C for H₂O

OUR THGEM DESIGN

Thickness: 0.4 mm, hole diameter: 0.4 mm, pitch: 0.8 mm

12 sectors on both top and bottom, 0.7 mm separation

24 fixation points to guarantee THGEMs flatness

border holes diam.: 0.5 mm

pillars in PEEK

two THGEMs side by side to form

the 60 x 60 cm² surface

THE PHOTOELECTRON SIGNAL

Clusterization to separate MIPs

After 7 years of R&D

THGEM characterization, performance

Photoelectron extraction

IBF (Ion Back Flow) suppression

Tripple THGEM: IBF suppression (<5%) by staggering plates

IBF suppression
(<3%) introducing a
MM stage:
no need of high
Transfer electric field

Hybrid architecture

Cherenkov light detection in TB

ELECTRICAL STABILITY

THGEMs, lessons

- <u>Full</u> vertical <u>correlation</u> of current sparks THGEM1 & THGEM2
- Recovery time <10 s (our HV arrangement)
- Sparke rates: ~ no dependence on beam intensity and even beam on-off
- <u>Discharge correlation</u> within a THGEM (also non adjacent segments) and among different THGEMs (cosmics ?)
- Total spark rates (4 detectors): ~10/h

MICROMEGAS, lessons

- MM sparks only when a THGEM spark is observed (not vice versa)
- Recovery time ~1s (our HV arrangement)
- The only real issue: dying channels (pads)
 - Local shorts, larger current, no noise issue
 - 2.5 ‰ developed in 12 months
 - Dirty gas / dust from molecular sieves & catalyst?

NOISE FIGURES

CONSTRUCTION & ASSEMBLY

Glueing the support pillars

ASSEMBLY in a nutshell

final assembly of the active module assembly with CsI in glovebox

Onto the RICH

glovebox also to mount the active module onto the RICH

CsI QE measurements at coating

19 Csl evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)

11 coated THGEMs available, 8 used + 3 spares

Tr coated Triolins available, 6 used + 3 spares				
THGEM number		evaporation date	at 60 degrees	at 25 degrees
Thick GEM 319		1/18/2016	2.36	2.44
Thick GEM 307		1/25/2016	2.65	2.47
Thick GEM 407		2/2/2016	2.14	2.47
Thick GEM 418		2/8/2016	2.79	2.98
Thick GEM 410		2/15/2016	2.86	3.14
Thick GEM 429		2/22/2016	2.75	2.74
Thick GEM 334		2/29/2016	2.77	3.00
Thick GEM 421 re-c	oating	3/10/2016	2.61	2.83
Reference piece		7/4/2016	3.98	3.76

QE measurements indicate

<THGEM QE> = 0.73 x Ref. pieceQE with s.r.m. of 10%

in agreement with expectations (THGEM optical opacity = 0.78)

QE is the result of a surface scan (12 x 9 grid, 108 measurements)

Good uniformity, in the example

 σ_{QE} / $\langle QE \rangle = 3\%$

CONSTRUCTION & ASSEMBLY

glovebox also to mount the active module onto the RICH

READ-OUT and SERVICES

read-out: already available for the MWPCs with Csl

FE chip APV25

LV supply

COOLING

Gas lines

P, T sensors