The MPGD-Based Photon Detectors
for the upgrade of COMPASS RICH-1
and beyond

S. Dalla Torre

INFN - TRIESTE

on behalf of the COMPASS RICH group
COMPASS Spectrometer dedicated to h physics @ SPS (CERN)

Top photon detectors

MAPMTs coupled to lens telescopes

MWPCs+Csl (from RD26): successful but performance limitations, in particular for the 4 central chambers

RICH-1

h-PID range: 3-60 GeV/c

n. of ph.s @ β = 1

3 m

6 m

5 m

Al vessel

MWPC’s

MPGD-based PDs

UV mirror wall

PMTs

beam pipe

radiator gas: C4F10

MWPC’s

MPGD-based PDs

4 new detectors of 600 mm x 600 mm

for COMPASS run 2016

JINST 9 (2014) P01006

NIM A 577 (2007) 455
NIM A 779 (2015) 69

COMPASS RICH-1

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE
MWPCs with CsI photocathode, the limitations

- Severe recovery time (~1 d) after a detector discharge
 - *Ion accumulation at the photocathode*
- Feedback pulses
 - *Ion and photons feedback from the multiplication process*
- Ageing (QE reduction) after integrating a few mC/cm²
 - *Ion bombardment of the photocathode*

→ Low gain: a few times 10^4 (effective gain: <1/2)
→ “slow” detector

To overcome the limitations:

- Less critical architecture
- suppress the PHOTON & ION feedback
- use intrinsically faster detectors

→ **MPGDs**
Following a 7-year R&D

THGEMs bocck photon feedback

Resistive MICROMEGAS by bulk technology
- traps the ions
- ~100 ns signal formation

60 x 60 cm² detectors formed by 30 x 60 cm active elements

THGEM, detail

77% surface for CsI coating

FUSED SILICA WINDOWS
MESH WIRES
DRIF WIREs
THGEM 1
THGEM 2
MESH
ANODE WITH PAD

CsI coating

HV is applied here through a resistor (mesh @ ground)

Resistor arrays

Signals

PCB

0.07 mm fiberglass

Signal readout from this pad

Bulk MICROMEGAS, detail

Micromesh support pillars (diam. 0.4 mm, pitch 2 mm → 8‰ dead area)
COMPONENT QA in a nutshell

Measurement of the raw material thickness before the THGEM Production, accepted: ± 15 μm ↔ gain uniformity σ < 7%

THGEM polishing with an “ad hoc” protocol setup by us: >90% break-down limit obtained

X-ray THGEM test to access gain uniformity (<7%) and spark behaviour

X-ray MM test to access integrity and gain uniformity (<5%)
CsI coating for THGEMS

- THGEM
- THGEM box
- piston
- 4 evaporators
- Turbopump

QE uniformity
- 3 % r.m.s. within a photocathode
- 10 % r.m.s. among photocathodes
- mean value: 93% of reference
Hardware, commercial by CAEN

- HV control
 - Custom-made (C++, wxWidgets)
 - Compliant with COMPASS DCS (slow control)
 - “OwnScale” to fine-tune for gain uniformity
 - V, I measured and logged at 1 Hz
 - Autodecrease HV if needed (too high spark-rate)
 - User interaction via GUI
 - Correction wrt P/T to preserve gain stability

Gain stability vs P, T:
- \(G = G(V, T/P) \)
- Enhanced in a multistage detector
- \(\Delta T = 1^\circ C \rightarrow \Delta G \approx 12\% \)
- \(\Delta P = 5 \text{ mbar} \rightarrow \Delta G \approx 18\% \)

THE WAY OUT:
- Compensate T/P variations by V
 - Gain stability at 5% level

Scan results on parameter: GainMean

Low Intensity High Intensity

1 week

In total 136 HV channels with correlated values
Main Detector Figures

- **Current sparks in THGEMs**
 - Rate < 1/h per detector
 - Recovery time: ~10 s
 - Fully correlated between the two layers
 - Mild dependence on beam intensity

- **Current sparks in MICROMEGAS**
 - Induced by THGEMs
 - Recovery time: ~1 s

- **Ion backflow:** ~3% level

- **Noise:** 900 electron equivalent (r.m.s.)
 - Channel C: 4pF
Correlation between photons and trajectories

From Event Display
- Ring centre calculated from particle trajectory
- Detected photoelectrons: hits on the sensors

For reference:
\[\theta (\beta = 1) = 52.5 \text{ mrad} \]

\[p = 3.5 \text{ GeV/c} \]
\[\theta = 34 \text{ mrad} \ (\pi \text{ hypothesis}) \]

\[p = 3.8 \text{ GeV/c} \]
\[\theta = 38 \text{ mrad} \]

\[p = 4.8 \text{ GeV/c} \]
\[\theta = 43.5 \text{ mrad} \]

\[p = 7.8 \text{ GeV/c} \]
\[\theta = 49 \text{ mrad} \]

\[p = 8.4 \text{ GeV/c} \]
\[\theta = 49.5 \text{ mrad} \]
Residual distribution for individual photons (preliminary π-sample): $\theta_{\text{calculated}} - \theta_{\text{photon}}$

- ** photon_residual_2 **
 - Entries: 47807
 - Mean: 0.3553
 - RMS: 2.056
 - χ^2/ndf: 62.12/14
 - Constant: 2513 \pm 19.0
 - Mean: -0.001523 ± 0.016607
 - Sigma: 1.832 \pm 0.027
 - Sigma: 1.8 mrad

- ** photon_residual_4 **
 - Entries: 30644
 - Mean: 0.7249
 - RMS: 2.309
 - χ^2/ndf: 34.65/17
 - Constant: 1614 \pm 14.3
 - Mean: 0.562 ± 0.017
 - Sigma: 1.751 \pm 0.021
 - Sigma: 1.7 mrad

- ** photon_residual_11 **
 - Entries: 20106
 - Mean: 0.5085
 - RMS: 2.54
 - χ^2/ndf: 51.02/11
 - Constant: 1081 \pm 12.0
 - Mean: -0.05879 ± 0.01887
 - Sigma: 1.555 \pm 0.021
 - Sigma: 1.6 mrad

- ** photon_residual_13 **
 - Entries: 20887
 - Mean: 0.04575
 - RMS: 2.497
 - χ^2/ndf: 58.47/17
 - Constant: 1083 \pm 11.8
 - Mean: -0.272 ± 0.020
 - Sigma: 1.747 \pm 0.026
 - As expected

Pisa Meeting 2018

MPGD-based photon detectors

Silvia DALLA TORRE
GAIN FROM A PURE PHOTON SAMPLE

From electronic noise → Threshold

From threshold & gain → photoelectron detection (effective) efficiency > 80%

For comparison, in MWPCs: ~50-60%

Gain = 13445 +/- 144.943

Gain = 13854 +/- 205.862

From the extrapolated exponential an estimate of the noise level under the signal: ~10%
DETECTED PHOTONS per RING

<table>
<thead>
<tr>
<th>h_n_VS_theta_after</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>56</td>
</tr>
<tr>
<td>Mean</td>
<td>39.82</td>
</tr>
<tr>
<td>RMS</td>
<td>14.04</td>
</tr>
<tr>
<td>χ^2 / ndf</td>
<td>27.66 / 13</td>
</tr>
<tr>
<td>p_0</td>
<td>1808 ± 147.7</td>
</tr>
<tr>
<td>p_1</td>
<td>9.477 ± 6.200</td>
</tr>
</tbody>
</table>

- **Extrapolate to 52.5 mrad**, number of photons = 12.0493
- **First part of the function**, signal = 10.9547
- **Second part of the function**, noise = 1.09458

$$N(\theta_{\text{Ch}}) = p_0 \cdot \sin^2 \theta_{\text{Ch}} + p_1 \cdot \theta_{\text{Ch}}$$

Blue: after Poisson correction

Pisa Meeting 2018
MPGD-based photon detectors
Silvia DALLA TORRE
DETECTED PHOTONS per RING

\[N(\theta_{Ch}) = p_0 \cdot \sin^2 \theta_{Ch} + p_1 \cdot \theta_{Ch} \]

- Extrapolate to 52.5 mrad, number of photons = 2.0493
- First part of the function, signal = 1808.9 ± 147.7
- Second part of the function, noise = 9.477 ± 6.200

Blue: after Poisson correction

Characterization on-going
h-PID at high p ($> 6-8$ GeV/c)

- Required for physics at the future ELECTRON-ION COLLIDER (EIC)
 - Collider-specific issues
 - shorter radiator to control setup sizes (advantages also for fixed target)
 namely more detected photons per unit radiator length
 → increased resolution
 - Operation in magnetic field
 - An interesting option
 - Exploit the extremely far VUV region (~120 nm) with a windowless RICH and gaseous photon detectors, test beam @ Fermilab
MOVING FURTHER WITH MPGD-based PDs

In the frame of
- Generic R&D for EIC – eRD6
- INFN – RD_FA

resistive MM
with small
pad size
O(10 mm²)

ALREADY ON GOING

GEM vs THGEM as photocathodes

Issues related to hybrid MPGD-based PDs operated in C-F atmosphere:
- photoelectron extr
- detector gain
- ageing

C. D. R. Azevedo et al., 2010 JINST 5 P01002
A VERY RECENT NEW OPTION FOR THE R&D

Csl, the only standard photoconverter compatible with gaseous atmospheres, has problematic issues, main ones:

- It does not tolerate exposure to air (H₂O vapour, O₂)
- Ageing by ion bombardment

Antonio Valentini et al. – INFN Bari
Italian patent application n. 102015000053374

- Photocathodes: **diamon film obtained with Spray Technique making use of hydrogenized ND powder**
 - Spray technique: T ~ 120° (instead of >800° as in standard techniques)

Coupling of ND photoconverter and MPGDs?

an exiting perspective with several open questions

- Compatibility, performance with gas?
- Radiation hardness?
- Ageing?

47 % (!)

CsI, the only standard photoconverter compatible with gaseous atmospheres, has problematic issues, main ones:

- It does not tolerate exposure to air (H₂O vapour, O₂)
- Ageing by ion bombardment

L.Velardi, A.Valentini, G.Cicala al., Diamond & Related Materials 76 (2017) 1
SUMMARIZING ...

- **MPGD-based photon detectors** accomplish their mission in COMPASS RICH-1
 - From preliminary characterization exercises:
 - stable gain, large gain, good number of detected photoelectrons

- Technological achievement - for the **FIRST TIME**:
 - **single photon detection** is accomplished by MPGDs
 - THGEMs used in an experiment
 - MPGD gain > 10k in an experiment

- **MPGD-based photon detectors have a mission in the future of hadron physics**
THANK YOU
MORE INFORMATION
COMPASS RICH-1, gas transparency
- gas cleaning by on-line filters,
- separate functions:
 - Cu catalyst, ~ 40°C for O₂
 - 5A molecular sieve, ~ 10°C for H₂O

HANDLING THE VUV DOMAIN

Csl gasous sensors used in several Cherenkov detectors

\[(n-1) \text{ r.m.s (assuming Frank and Tamm):} \]

\[30 \times 10^{-6} \quad 46 \times 10^{-6}\]

MAPMT with UV extended window

MQWPCs with Csl photocathode

Refractie index

transmission through 1.87 m, corresponding to:

\[\text{H}_2\text{O}: \sim 1 \text{ ppm}, \quad \text{O}_2: \sim 3 \text{ ppm}\]
OUR THGEM DESIGN

- Thickness: 0.4 mm, hole diameter: 0.4 mm, pitch: 0.8 mm
- 12 sectors on both top and bottom, 0.7 mm separation
- 24 fixation points to guarantee THGEMs flatness
- Border holes diam.: 0.5 mm
- Two THGEMs side by side to form the 60 x 60 cm² surface
- Pillars in PEEK
FIELD SHAPING ELECTRODES AT THE EDGES

THGEM border study

large field values at the chamber edges and on the guard wires

isolating material (Tufnol 6F/45) protection

Field shaping electrodes in the isolating material protections of the chamber frames
Selecting good hit candidates (A0<5 ADC units, 0.2<A1/A2<0.8)

Clusterization to separate MIPs

Hybrid MPGD (novel detector)

MWPC (old detector)

All sectors provide the same time response

MPGD-based photon detectors

Silvia DALLA TORRE

Pisa Meeting 2018

Noise

photons

MIPs

APV saturation

MIP suppression by strong reversed bias
After 7 years of R&D

THGEM characterization, performance

- 100 μm rim
- no rim

Photoelectron extraction

- Photon yield (blue)
- Charged Particles (red)
- vs Drift Field

IBF (Ion Back Flow) suppression

- Tripple THGEM: IBF suppression (<5%) by staggering plates

IBF suppression (<3%) introducing a MM stage: no need of high Transfer electric field
- Hybrid architecture

Time resolution
~7 ns

UV light scan vs E_drift

Cherenkov light detection in TB
THGEMs, lessons

- Full vertical correlation of current sparks THGEM1 & THGEM2
- Recovery time <10 s (our HV arrangement)
- Spark rate: ~ no dependence on beam intensity and even beam on-off
- Discharge correlation within a THGEM (also non adjacent segments) and among different THGEMs (cosmics ?)
- Total spark rates (4 detectors): ~10/h

MICROMEGAS, lessons

- MM sparks only when a THGEM spark is observed (not vice versa)
- Recovery time ~1s (our HV arrangement)
- The only real issue: dying channels (pads)
 - Local shorts, larger current, no noise issue
 - 2.5 % developed in 12 months
 - Dirty gas / dust from molecular sieves & catalyst?

Graphs:

- Spark rate vs. beam intensity
- Current vs. time
NOISE FIGURES

MWPCs (0.2 pF): $\langle \sigma \rangle \sim 700 \ e^{-}$

Hybrids (4 pF): $\langle \sigma \rangle \sim 900 \ e^{-}$
CONSTRUCTION & ASSEMBLY

- Complex mechanics
- Wire planes
- Glueing the support pillars
- Automatized glueing
- Detector layers
- THGEM staggering
ASSEMBLY in a nutshell

Pre-assembly w/o CsI

Onto the RICH

glovebox also to mount the active module onto the RICH

final assembly of the active module assembly with CsI in glovebox
CsI QE measurements at coating

19 CsI evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)

11 coated THGEMs available, 8 used + 3 spares

<table>
<thead>
<tr>
<th>THGEM number</th>
<th>evaporation date</th>
<th>at 60 degrees</th>
<th>at 25 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick GEM 319</td>
<td>1/18/2016</td>
<td>2.36</td>
<td>2.44</td>
</tr>
<tr>
<td>Thick GEM 307</td>
<td>1/25/2016</td>
<td>2.65</td>
<td>2.47</td>
</tr>
<tr>
<td>Thick GEM 407</td>
<td>2/2/2016</td>
<td>2.14</td>
<td>2.47</td>
</tr>
<tr>
<td>Thick GEM 418</td>
<td>2/8/2016</td>
<td>2.79</td>
<td>2.98</td>
</tr>
<tr>
<td>Thick GEM 410</td>
<td>2/15/2016</td>
<td>2.86</td>
<td>3.14</td>
</tr>
<tr>
<td>Thick GEM 429</td>
<td>2/22/2016</td>
<td>2.75</td>
<td>2.74</td>
</tr>
<tr>
<td>Thick GEM 334</td>
<td>2/29/2016</td>
<td>2.77</td>
<td>3.00</td>
</tr>
<tr>
<td>Thick GEM 421 re-coating</td>
<td>3/10/2016</td>
<td>2.61</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Reference piece: 7/4/2016 3.98 3.76

QE measurements indicate

\[
I_{Normalized} = \frac{I_{CsI} - I_{CsI\,Noise}}{I_{Ref} - I_{Ref\,Noise}}
\]

\[
<\text{THGEM QE}> = 0.73 \times \text{Ref. piece QE with s.r.m. of 10%}
\]

in agreement with expectations (THGEM optical opacity = 0.78)

QE is the result of a surface scan (12 x 9 grid, 108 measurements)

Good uniformity, in the example \(\sigma_{QE} / <QE> = 3\% \)
CONSTRUCTION & ASSEMBLY

- **Complex and precise mechanics**
- **Assembly in clean room**
- **Machine controlled glue-dispenser**
- **Including photocathode in glovebox**
- **Glovebox also to mount the active module onto the RICH**
READ-OUT and SERVICES

read-out:
already available for the MWPCs with CsI

FE chip APV25
LV supply
COOLING
Gas lines
P, T sensors

150 ns