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Why high sensitivity cryogenic light detectors?

* Improve the sensitivity of the next generation experiments searching for
Neutrino-less double beta decay.

The CUORE experiment searches for
neutrino-less double beta decay of 130T7e.

CUORE
988 TeO.
. bolometers;
The expected signal are two electrons now in data taking

with a total kinetic energy of ~ 2.5 MeV.
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Why high sensitivity cryogenic light detectors?

 Improve the sensitivity of the next generation experiments searching for rare
events: Neutrino-less double beta decay and Dark Matter interactions.

B CUORE-0 Preliminary — Cuoricino
10 & | Exposure: 18.1 kg - yr ## CUORE-O0

« The CUORE experiment searches for
neutrino-less double beta decay of 130T7e.

 The expected signal are two electrons
with a total kinetic energy of ~ 2.5 MeV.

Event Rate [counts/keV/kg/y]
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 The main background comes from a
particles (residual radioactive
contamination of the detector materials).




Why high sensitivity cryogenic light detectors?

 Improve the sensitivity of the next generation experiments searching for rare
events: Neutrino-less double beta decay and Dark Matter interactions.

The CUORE experiment searches for
neutrino-less double beta decay of 130T7e.

The expected signal are two electrons
with a total kinetic energy of ~ 2.5 MeV.

The main background comes from a
particles (residual radioactive
contamination of the detector materials).

This background can be rejected
detecting the Cherenkov light emitted
only by B/y interactions (the only ones
above threshold).

Cherenkov light detection
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The next generation requirements

The light detectors for next generation bolometric
experiments must satisty these requirements:

1.

High energy resolution < 20 eV
RMS

Large active area ~25 cm?
Ease in fabrication and operation

Scalability (~ 1000 channels size
experiment)

High radio-purity level

Wide operation temperature range
(5 - 20 mK)
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Several works exploiting different technologies:

1) L. Bergé et al., Phys. Rev. C 97 (2018) -> Ge
Naganov-Luke with NTD

2) M. Biassoni et al., Eur.Phys.J. C75 (2015) 10,
480 -> Si Naganov-Luke with NTD

3) K.Schaeffner et. al, Astropart.Phys. 69 (2015)
30-36 -> W-TES on SOS

4) M. Willers et al., JINST 10 P03003 (2015) -> Si
Naganov-Luke + TES

5) CALDER -> KID -> THIS TALK

Up to now none of these technologies
demonstrated to satisfy all the requirements




Kinetic Inductance Detector:KID

e Superconductors operated well below the
critical temperature Tc

e Biasing with high frequency AC current (v ~
GHz) they exhibit a kinetic inductance (Lk)
-> caused by the inertia of the Cooper pairs

* By coupling the superconductor with a
capacitor, a high merit factor RLC circuit
can be realized (Q~104-109)

fo = 1
o 27\ LC
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Kinetic Inductance Detector:KID

e Superconductors operated well below the
critical temperature Tc

e Biasing with high frequency AC current (v ~

GHz) they exhibit a kinetic inductance (Lk)
-> caused by the inertia of the Cooper pairs

* By coupling the superconductor with a

capacitor, a high merit factor RLC circuit
can be realized (Q~104-109)

fo =

1
2 \VDC
- A photon interaction breaks the Cooper
pair -> the kinetic inductance changes ->

the resonance shape and frequency
change
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Kinetic Inductance Detector:KID

Advantages:

* Natural multiplexing in the frequency

domain

* Excellent sensitivity -> baseline

energy resolution ~eV

e Stable response and operation in a
wide temperature range if T << Tg

But..

e Poor active surface -> few mm2
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Phonon-mediated approacnh
T

ﬂ'%u

KID

 To get around the poor KID active surface an indirect

>

detection of the photon interactions was proposed
 KIDs are evaporated on a large (cm?2) insulating substrate

(Si or Ge) that mediates the photon interactions converting

them into phonons . . ,

_ sub/vsound
Z =1 NKAKpK <A8upp Psupp i Asub Tthermal )

« .....with a drawback: phonons collection efficiency



Cryogenic Wide-Area Light Detector with Excellent Resolution
ERC Starting Grant, from March 2014

. Read-out and analysis tools; optimization of the detector geometry using Al resonator and
2x2 cm?2 Si substrate -> 80 eV RMS

. Test of more sensitive superconductors, such as Ti+TiN, or TiAl -> resolution < 20 eV

. Large-scale test of the final detectors 5x5 cm2 on TeO2 array @ Underground Laboratory of
Gran Sasso.
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Detectors characterisation

Amplitude [dB]
>

e Basic resonance parameter evaluation with a fit
of the frequency sweep of the transmitted signal

e From the center of the resonance loop we
monitor the amplitude and phase variations
induced by energy depositions

e Calibrated optical pulses (400 nm led bursts) in
the range between 0.1 and 30 keV; and X-rays
from 55Fe/57Co (as cross-check for the energy
calibration)
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counts/keV

Al prototype: final results
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More sensitive superconductor: AlTIA

Tc [K]

L[pH/square]

Qi; max

Phonon ¢

CSNSM
Producer IFN-CNR Nool-CNRS CNR/FBK
Status Completed Completed Aborted
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Same design as Aluminum films.

Titanium enhances Kinetic
Inductance but lowers the internal

Q.

Tested different TiAl and AITiAl
multilayers. Best results from:

Al(30nm)

Ti(33nm)

Al(14nm)

Silicon




AlTIAl prototype: final results

Energy scan with optical pulses Absolute energy calibration with poisson
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Phase Signal enhanced respect to Al prototypes -> Phase RMS ~ 25 eV
Amplitude Signal is the same -> 80 eV RMS

L. Cardani et al, SU.S.T. 31 7 (2018)
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Pulse tube iInduced noise

The vibrations are induced in all
the refrigerator structure, as a
result also on the detector

Worsening of the energy
resolution
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A dry dilution refrigerator is precooled by a two-stage
pulse tube refrigerator

— KID-1 PT ON
— KID-1 PT OFF

IIl|lIlIlIIIl|lIlI|IIII|IIII|II

| IIIIllI| | IIIIIII| | IIlIlIll

s ET T 1

-,
T

10’ 10°* 10
Frequency [Hz]



Silicon on Saphire substrate: SOS

Silicon SOS
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KIDs on (SOS) are barely affected by the Pulse Tube induced noise

Fundamental requirement for an application in the CUORE cryogenic facility
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Last CALDER phase: the 5x5 cm? detector
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3. Large-scale test of the final detectors 5x5 cm2 on TeO2 array @ Underground Laboratory of
Gran Sasso.

Result are still preliminary;
several aspects are still
under investigation
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Conclusions

The CALDER project aims to develop the light
detector for the next generation bolometric
experiments exploiting KIDs

The phase 1 and 2 of the project are accomplished:
AlTIAl resonator with 25 eV baseline RMS

Using the SOS substrate the PT vibrations worsen
the energy resolution just of few percent (5-10%)

The test and optimisation of the final 5x5 cm?2 light
detector are Iin progress.
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CALDER public webpage:
http://www.romal.infn.it/exp/calder/new
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http://www.roma1.infn.it/exp/calder/new




Resonance parameter evaluation

The transmitted microwave through feed-line (S21) is affected not only by the resonator:
1) read-out chain

2) impedance mismatches in proximity of the KID

3) distortion of the resonance due to power absorbed by the resonator =

S, is fitted in the (1.Q, f) space S °' 7 =2597079 MHz 3 f
with the frequency sweep: nIg Q= 147k P
o i =
: Q.= 156k E
T Q =2607 k =
z

N
min <Z | S21(fn, 11par) — Data(fy) 2) 0;—

n=0

[1] M. S. Khalil et al., J. Appl. Phys. -4E
111, 054510 (2012) i
[2] L. J. Swenson et al., J. Appl. -
Phys. 113, 104501 (2013) e o
[3] N. Casali et al., 6 -4 -2 0 2 4 6 8 10 20
J.Low.Temp.Phys. 184 (2016) [[A.U.] Frequency -fO [kHz]
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