

Design and performance studies of the calorimeter system for a FCC-hh experiment

Clement Helsens, CERN-EP on behalf of the FCC-hh calorimeters group 14th PISA meeting, May 29th 2018

FCC-hh

2

PM2018

C. Helsens

FCC-hh scope

- FCC-hh Target:
 - √s =100TeV
 - 100 km long
 - Needs 16T magnets
- Direct search for New Physics:
 - Direct prod. of heavy resonances up to m ≈ 40 TeV
 - Stops up to m ≈ 10TeV
- Precision SM physics (complementary to e⁺e⁻):
 - Higgs self-coupling ($\Delta\lambda/\lambda \approx 4\%$)
 - Higgs rare decays
 - EWK, Top physics in new extreme dynamical regimes

Key parameters

- Luminosity:
 - Baseline: 5 10³⁴ cm⁻² s⁻¹
 - Ultimate: 30 10³⁴ cm⁻² s⁻¹
- O(30 ab⁻¹) ~25 years of operations
- Radiation levels:

parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hł
E_{cm}	TeV	14	14	27	100
circumference	km	26.7	26.7	26.7	97.8
$\operatorname{peak}\mathcal{L}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1	5	25	30
bunch spacing	ns	25	25	25	25
number of bunches		2808	2808	2808	10600
$\operatorname{goal}\int\mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel}	mb	85	85	91	108
σ_{tot}	mb	111	111	126	153
BC rate	MHz	31.6	31.6	31.6	32.5
peak pp collision rate	GHz	0.85	4.25	22.8	32.4
peak av. PU events/BC		27	135	721	997
rms luminous region σ_z	mm	45	57	57	49
line PU density	$\rm mm^{-1}$	0.2	0.9	5	8.1
time PU density	ps^{-1}	0.1	0.28	1.51	2.43
$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
charged tracks per collision N_{ch}		95	95	108	130
Rate of charged tracks	GHz	76	380	2500	4160
$\langle p_T \rangle$	GeV/c	0.6	0.6	0.7	0.76
bending radius for $\langle p_T \rangle$ at B=4 T	cm	50	50	58	63
number of pp collisions	10 ¹⁶	2.6	25	90	324
charged part. flux at 2.5 cm est.(FLUKA)	$ m GHzcm^{-2}$	0.2	0.8	4.6	8 (12)
1MeV-neq fluence at 2.5 cm est.(FLUKA)	$10^{16}{ m cm}^{-2}$	0.5	4.5	19	80 (60)
total ionizing dose at 2.5 cm est.(FLUKA)	MGy	1.5	15	60	254 (400
$dE/d\eta _{\eta=5}$	GeV	.	.	.	670
$dP/dn _{n=1}$	kW				3.4

- pp cross-section from 14 TeV \rightarrow 100 TeV only grows by factor 2
- radiation level increase mostly driven by increase in inst. luminosity
- 10 times more fluence compared to HL-LHC (x100 wrt to LHC)
 - For calorimetry
 - 1 MeV-neq fluence \approx 4 10¹⁵⁽¹⁴⁾cm⁻² in the Barrel for E-Cal (H-Cal)
 - 1 MeV-neq fluence \approx 2 10¹⁶ cm⁻² in the End-Caps

29/05/18

Physics req. for calorimeters (low p_T)

- Low p_{τ} physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger η coverage (up to $|\eta|^{\sim}6$) compared to LHC
 - And radiation hard detectors (especially FWD) •

5

29/05/18

6

Physics req. for calorimeters (low p_T)

- Low p_T physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger η coverage (up to $|\eta|^{6}$) compared to LHC
 - And radiation hard detectors (especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH->bbγγ)
 - Small noise and stochastic terms
 - Robustness vs pile-up (noise)
 - π⁰ rejection capabilities

Physics req. for calorimeters (low p_T)

- Low p_T physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger η coverage (up to $|\eta|^{6}$) compared to LHC
 - And radiation hard detectors (especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH->bbγγ)
 - Small noise and stochastic terms
 - Robustness vs pile-up (noise)
 - π⁰ rejection capabilities
- Need excellent lateral and longitudinal granularity
 - Make Particle-Flow algorithm more effective
 - Pointing capabilities (needed to trigger on HH->bbγγ)
 - Helps with pile-up rejection

FCC-hh Calorimeters

PM2018

C. Helsens

8

Physics req. for calorimeters (high p_T)

- The FCC-hh has sensitivity for (colored) hadronic resonances up to m ≈ 40 TeV, hence require:
 - Full containment for jets with $p_T = 20 \text{ TeV} \rightarrow \text{small constant term}$
 - Limit punch through, and helps muon ID
 - Assess requirements correctly drives detector size \Rightarrow magnet \Rightarrow cost

 $\geq 11 \lambda_{\rm I}$ with E-Cal+H-Cal seems good enough

Q

Physics req. for calorimeters (high p_{T})

- The FCC-hh has sensitivity for (colored) hadronic resonances up to $m \approx 40$ TeV, hence require:
 - Full containment for jets with $p_{\tau} = 20 \text{ TeV} \rightarrow \text{small constant term}$ ۲
 - Limit punch through, and helps muon ID
 - Assess requirements correctly drives detector size \Rightarrow magnet \Rightarrow cost

- The FCC-hh has sensitivity for boosted resonances (ex: $Z' \rightarrow tt$ or RSG $\rightarrow WW$) up to m ≈ 20 TeV
 - W jet with $p_T = 10 \text{ TeV} \rightarrow \Delta R = 0.02$ (typical E-Cal cell size)
 - Need very high granularity to resolve such substructure (tracking can achieve such separation)
 - target: 4x better granularity wrt ATLAS/CMS detectors
 - Has calorimetry the capability to resolve such objects?
 - Granularity translate to actual separation power?

Calorimeter choices

٠

E-Cal: Liquid Argon used for barrel, end-cap and forward

Radiation hardness

Liquid Argon Calorimeters

FCC-hh Calorimeters

PM2018

C. Helsens

Liquid argon calorimeter (barrel) Much more granular than ATLAS calorimeter (×10) $\eta = 0$ High long. and lat. segmentation possible with straight multilayer electrodes + Easier construction (inaccuracies enlarge the constant term) - Sampling fraction changes with calorimeter depth FCC-hh barrel ECAL liquid argon absorber readout 1st laver (presampler no Pb crvostat $185~\mathrm{cm}$ 192 cm 272 cm 257 cm $5 \,\mathrm{cm}$ 65 cm

Characteristics

- 2 mm absorbers inclined by 50° angle
- LAr gap increases with radius:
 - 1.15 mm-3.09 mm
- 8 longitudinal layers
 - first one without lead as a pre-sampler
- $\Delta \eta = 0.01 \ (0.0025 \ \text{in} \ 2^{\text{nd}} \ \text{layer})$
- $\Delta \Phi = 0.009$

 $10 \mathrm{cm}$

Liquid argon calorimeter (end-caps)

- Both E-Cal and H-Cal within same cryostat
- E-Cal:
 - 1.5 mm lead discs
 - 0.5 mm LAr gap
- H-Cal:
 - 2 cm copper discs
 - 2 mm LAr gap
- First layer serves as a pre-sampler
- Forward-Cal simulated with same layout
 - 0.1 mm LAr gap
 - 1 cm copper discs in E-Cal
 - 4 cm copper discs in H-Cal

4

29/05/18

Single electron performance

- Simulation of single electrons
- No noise in detector
- Reconstruction
 - sliding window algorithm
 - $\Delta \eta \times \Delta \phi = 0.07 \times 0.17$
- Very good performances over the acceptance range

16

Noise (in cluster $\Delta\eta x \Delta \Phi = 0.07 \times 0.17$)

- Electronic noise
 - estimated for PCB readout (additional capacitance)
 - Noise in cluster ~ 300 MeV

Electronic Noise for one cell $\Delta\eta \times \Delta\varphi = 0.01 \times 0.009$

Pile-up noise

- From Min-Bias simulation
- In-time pile-up suppression
 - rejecting energy deposits from pile-up vertices tagged by the inner tracker (to be studied)
- Out-of-time pile-up as correction factor (~ 1.5)
 - Not included
 - HL-LHC suppress it to a large extent

29/05/18

Photon resolution

Energy resolution, η=0

- Large impact of in time PU on the noise term
 - Out of the box with no sophisticated technics for removal!!
 - Severely degrades m_{yy} resolution
 - Improving clustering, not sliding windows may help
 - Impacts Higgs self-coupling precision by $\delta \kappa_{\lambda} \approx 1\%$
 - Some thought needed (tracking, timing information can help?)

> 9 0.05

Events / 0.5 (0.07

0.03

0.02

0.01

Tile Calorimeters

18

Tile calorimeter

- Granularity
 - Much more granular than ATLAS (×10)
 - Δη = 0.025, Δφ = 0.025
 - 10 longitudinal layers

29/05/18

FCC-hh Calorimeters

PM2018

C. Helsens

- High longitudinal and lateral segmentation possible with SiPMs
- Mechanical structure feasible, assembly study done
- First test of scintillator tiles started

H-Cal barrel optimisation

- Steel absorbers partially substituted with lead
 - Decreasing non-compensation by suppression of EM response
 - Reduction of depth by 0.4 λ (at η = 0)

- Simulation of single pions
 - No noise in detector
 - Achieved goal resolution for combined E-Cal H-Cal

29/05/18

20

FCC-hh Calorimeters PM2018 C. Helsens

21

Jet performance

- Excellent resolution up to $p_T = 10 \text{ TeV}$
- Large impact of PU at low p_T (as exp.)
 - Crucial for low mass di-jet resonances
 - Again, such as HH→bbyy
- Further motivation for Particle-flow
 - Charged PU contribution can be "easily" subtracted (Charged Hadron Subtraction)

Jet pile-up identification

- With 200-1000PU
 - Will get large amount of fake-jets from PU combinatorics
 - Need both longitudinal/lateral segmentation for PU identification
 - Simplistic observables show possible handles, pessimistic...
 - In reality tracking will help a lot

FCC-hh Calorimeters

Jet sub-structure

0.8 0.9

 $\tau_{2.1}$

- With Calorimeter standalone, and without B field
 - Performance good up to 1 TeV
- Far from having explored all possibilities:
 - Particle-Flow tracks and B field (decrease local occupancy) will improve
 - Machine Learning techniques will help a lot (train on 3D shower image)

23

29/05/18

Conclusion

- Reference detector for FCC-hh experiments with high granularity
 - LAr-based for E-Cal and H-Cal in $1.4 < |\eta| < 6$ (radiation hard detector)
 - Scintillator-based H-Cal for $|\eta| < 1.4$
- In no pile-up environment achieved the goal resolution:
 - Electrons/photons: 8%/VE ⊕ 0.2%
 - Pions: 50%/√E ⊕ 2.2%
 - Jets (without magnetic field): 60%/√E ⊕ 2.6%
- Pile-Up: a challenge for FCC-hh environment
 - Valid for any studied detector option
 - Optimisation of reconstruction procedures necessary
 - Need help from tracking and timing
 - 1000 PU hostile environment also for calorimetry (energy resolution)
- Longitudinal/lateral segmentation is suitable for
 - PU jet Identification Particle-Flow algorithms
 - Angular and energy resolution

Bonus slides

25]

FCC-hh Calorimeters

26]

RSG->WW W->jj 29/05/18

FCC-hh Calorimeters

PM2018

C. Helsens

29

Di-boson res

<u>Randall-Sundrum Graviton</u>

- Signal with pythia8
- Cross sections from Pythia8, no k-factor
- Important benchmark model for detector performance on substructure
- Analysis pre-selection (Fully hadronic)
 - Jet1/2 p_T>3TeV, jet1/2 |η| <3
 - J1,2 τ₂₁, τ₃₂>0
 - |η jet1 η jet2|<2.4
- <u>Norm uncertainties</u>
 - ttbar 20% QCD 50%, VV 20%, VJ 40%

$$Flow_{n,5} = \sum_{k} \frac{|p_T^k|}{|p_T^{\text{jet}}|}$$
$$\frac{n-1}{5}R \le \Delta R(k, \text{jet}) < \frac{n}{5}R,$$

29/05/18

FCC-hh Calorimeters PM2018 C. Helsens

)*->jj

<u>Q* model</u>

- Spin ½
- Same coupling constant as SM quarks
- No interference considered, no k-factor
- Decays only to gluon, up, down
- Scale Λ to Q* mass
- Analysis selection
 - p_T(j1) and p_T(j2)>3TeV
 - Y*=|yjet1-yjet2|/2 < 1.5
- <u>Uncertainties</u>
 - 50% uncertainty on the Di-jet normalization

33

5σ discovery for Q*:

events

- 15TeV after 1 day (1fb⁻¹)
- 36TeV after 10 years @ baseline ٠
- 40TeV after full operation 25 years

Radiations

FCC-hh Calorimeters

PM2018

C. Helsens

37