

The calibration system for the g–2 calorimeters

Anna Driutti INFN Trieste g.c. Udine

Frontier Detectors for Frontier Physics 14th Pisa meeting on advanced detectors

La Biodola • Isola d'Elba • Italy 27 May - 2 June, 2018

Anomalous Magnetic Dipole Moment

- Magnetic moment: $\vec{\mu}_{\mu} = g_{\mu} \frac{Qe}{2m} \vec{S}$
- From the Dirac equation: $g_{\mu} = 2$
- Adding quantum corrections: $g_{\mu} > 2$
- Anomalous magnetic moment:

$$a_{\mu}^{\text{SM}} = \frac{g_{\mu}-2}{2} = a_{\mu}(\text{QED}) + a_{\mu}(\text{EW}) + a_{\mu}(\text{Had}) = (116591802 \pm 49) \times 10^{-11}$$

 Measurement of *a_μ* allows for a precise test of the Standard Model and to look for new physics.

Muon g-2 Experiment at Fermilab

BNL g - 2 experiment (E821) found a discrepancy > 3σ w.r.t. theoretical prediction.

Fermilab g - 2 experiment (E989) aims for a reduction of the experimental uncertainty by a factor of 4 with respect to BNL result:

 $\delta(a_{\mu})^{\text{exp.}}$: 540 ppb \rightarrow 140 ppb

 $\int_{220}^{\square} \text{If } a_{\mu} \text{ value is confirmed (using current } a_{\mu}^{SM}):$

$$\mathbf{a}_{\mu}^{\mathrm{FNAL}}-\mathbf{a}_{\mu}^{\mathrm{SM}}{\sim}~\mathbf{7}\sigma$$

Same experimental technique but improved:

- Muon beam (more statistics and fewer pions thanks to FNAL accelerator)
- Magnetic field uniformity and measurement, detectors and calibration procedures

Experimental Technique

For a muon moving in a magnetic field a_{μ} is proportional to the difference between <u>spin precession</u> and <u>cyclotron motion</u>:

$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = g \frac{e}{2m} \vec{B} - \frac{e}{m} \vec{B} = a_\mu \frac{e}{m} \vec{B}$$

Experimental Technique

A. Driutti (INFN Trieste g.c. Udine)

Measurement of ω_a

Injected polarized muons decay: $\mu^+ \rightarrow e^+ + v_e + v_{\mu}$:

 $\Rightarrow high energy \ e^+ \ are \ emitted \ preferentially \ with \ electron \ momentum \ direction \ strongly \ correlated \ with \ \mu^+ \ spin \ (parity \ violation \ of \ the \ weak \ decay)$ Number of high energy positrons as a function of time

Counting the number of e^+ with $E_{e^+} > E_{\text{threshold}}$ as a function of time (wiggle plot) leads to ω_a :

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$

 E_{e^+} and t are the measured observables.

Detectors for ω_a **Measurement**

- The energy and hit time of the *e*⁺ from the μ decay are measured by the 24 calorimeters positioned inside the ring.
- Each calorimeter is composed of 6×9 PbF₂ crystals read out individually by large-area SiPMs
- Calibration, time alignment and gain stability for each of 1296 channels is provided by the laser calibration system

Systematic budget for ω_a :

Category	E821 [ppb]	E989 Improvement Plans	Goal [ppb]	Key element:
Gain changes	120	Better laser calibration low-energy threshold	20	Laser
Pileup	80	Low-energy samples recorded calorimeter segmentation	40	Calo + Laser
Lost muons	90	Better collimation in ring	20	Calo + Laser
CBO	70	Higher n value (frequency)		
E and pitch	50	Better match of beamline to ring Improved tracker	< 30	Inflector + Kicker
		Precise storage ring simulations	30	Tracker
Total	180	Quadrature sum	70	

A. Driutti (INFN Trieste g.c. Udine)

PM2018 - La Biodola, May 29, 2018

Detectors for ω_a **Measurement**

- The energy and hit time of the *e*⁺ from the μ decay are measured by the 24 calorimeters positioned inside the ring.
- Each calorimeter is composed of 6×9 PbF₂ crystals read out individually by large-area SiPMs
- Calibration, time alignment and gain stability for each of 1296 channels is provided by the laser calibration system

Systematic budget for ω_a :

Category	E821 [ppb]	E989 Improvement Plans	Goal [ppb]	Key element:
Gain changes	120	Better laser calibration low-energy threshold	20	Largest improvement
Pileup	80	Low-energy samples recorded calorimeter segmentation Botton collimation in ring	40	Calo + Laser
CBO	90 70	Higher n value (frequency) Better match of beamline to ring	< 30	Inflector + Kicker
${\cal E}$ and pitch	50	Improved tracker Precise storage ring simulations	30	Tracker
Total	180	Quadrature sum	70	

A. Driutti (INFN Trieste g.c. Udine)

PM2018 - La Biodola, May 29, 2018

Requirements of the Calibration System

- <u>Absolute calibration</u> of the SiPMs response
- Provide gain stability at sub-per-mil in the short term (during the 700 µs after injections) and at the sub-percent-level in the long term (days)
- Time synchronization of the 1296 calorimeters' channels.

Laser based Calibration System with light intensity monitored at 10⁻⁴ and time resolution at the ps level

Laser Based Calibration System

Laser Control System

- Synchronized with the clock, control and command system (CCC) of the experiment
- Provides the laser pulse trains at programmable frequencies
- Generates physics event simulation ("flight simulator")

typical calibration mode:

- Sync pulse: before beam injection provides time synchronization for the 1296 calorimeters' channels
- In-Fill pulses: for calorimeter gain function
- Out-of-Fill pulses: for long-term gain variations (temperature , bias voltage)

Light Distribution System

- 70% of the light from each laser is equally distributed between 4 calorimeters by means of optical elements;
- Remotely controlled filter wheels vary the light intensity during calibration;
- Light transported to each calorimeter by single quartz fiber and distributed by diffuser and PMMA fiber bundle to crystals via coupling prisms.

6 Source Monitors (SMs)

- Designed to monitor pulse by pulse the laser light intensity
- 30% of the laser light distributed to 3 photo-detectors: 2 fast PIN diodes and 1 PMT
- PMT also views an Am/NaI light pulser for long term absolute stability.

6 Source Monitors (SMs)

- Designed to monitor pulse per pulse the laser light intensity
- 30% of the laser light distributed to 3

Details about the custom electronics for signal

 PN digitization and monitoring of ambient and electronics for temperatures in the poster session:

The Monitoring Electronic of the Laser Calibration system in the Muon g-2 experiment

M. lacovacci¹², P. Ol Meo', O. Escalante²³, S. Mastrolann², A. Nath² on behalf of the Wuon g-2 Collaboration a. Universal Tedence II' of Nacol, Compasso Universities SartAngels, VisComb, 60718 Napol, Ray b. NPN sec. 8 Napol, Compasso Universities of Monte SartAngels, VisComb, 60718 Napol, Ray b. NPN sec. 8 Napol, Compasso Universities of Monte SartAngels, VisComb, 60718 Napol, Ray b. NPN sec. 8 Napol, Compasso Universities of Monte SartAngels, VisComb, 60718 Napol, Ray b. NPN sec. 8 Napol, Compasso Universities of Monte SartAngels, VisComb, 60718 Napol, Ray beam In INCOLT Mutor g-2 Callibration system data flow S. Mastrolanni¹, O. Escalante^{1,2}, M. Iacovacci^{1,2}, A. Nath¹ on behalf of Muon g-2 Collaboration Inter University

- PiDs sum

ph

PN

24 Local Monitors (LMs)

- Each LM consists of a PMT which views light pulses from the SM (*P*₁, before distribution) and from the diffuser (*P*₂, after distribution).
- Stability of the light distribution to each calorimeter is monitored by the ratio P_2/P_1 .

A. Driutti (INFN Trieste g.c. Udine)

Example of "Very Short-Term" (order of ns) Gain Correction

- By using movable mirrors the light of two lasers can be sent to the same 4 calorimeters
- This configuration permits tests of the SiPMs' gain variation;
- Example: measurement of pile up effect:

A. Driutti (INFN Trieste g.c. Udine)

PM2018 - La Biodola, May 29, 2018

Example of "Short-Term" (order of μ **s) Gain Correction**

- For each SiPM the gain function is determined by pulsing the laser during muon fills;
- The gain variation is caused by the positron rate (higher at early-time and in the calorimeter's side near the ring) and by the power supply recovery time

A. Driutti (INFN Trieste g.c. Udine)

Example of "Long-Term" (order of hours) Gain Correction

Laser gain correction of SIPMs demonstrated using mono-energetic electron beams at the Frascati and SLAC test beam facilities:

1. "Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment," Nucl. Instrum. Meth. A 842, 86 (2017)

2. "Studies of an array of PbF₂ Cherenkov crystals with large-area SiPM readout," Nucl. Instrum. Meth. A 783 (2015)

Summary and Conclusions

- The g 2 experiment at Fermilab has the goal to measure a_µ with a systematic uncertainty of 140 ppb
- The main purpose of **the laser calibration system** is to provide calibration and time alignement to all the 1296 calorimeters' channels and to guarantee their gain stability with the challenging precision of 20 ppb!
- The experiment is taking data: 1×BNL statistics (raw data) has already been collected!

