A gamma calorimeter for the monitoring of the ELI-NP beam

Michele Veltri

University of Urbino and INFN Firenze

PM2018 - 14th Pisa Meeting on Advanced Detectors

The ELI Project

- ELI: Extreme Light Infrastructure
- It is a large scale european project part of the ESFRI roadmap
- It will be devoted to the investigation of light-matter interactions
- Under construction, it will be implemented as a distributed facility over 3 sites

- ELI Beamlines Czech Republic
- Production of short-pulse secondary sources driven by ultra intense lasers

- ELI Attoseconds Hungary
- Production of laser driven secondary sources (extreme UV and X-rays) of ultra-short time duration

ELI-NP: Extreme Light Infrastructure-Nuclear Physics

- ELI-NP will hosts two systems:
 - A very high intensity laser system with two 10 PW sources that combined can reach an intensity of 10²³ W/cm²
 - The Gamma Beam System (GBS)
 A very intense and monochromatic γ beam obtained by inverse Compton scattering of laser light off a high energy pulsed electron beam

- The expected performances will push the present limits and open a new field of investigation the "Nuclear Photonics"
- The GBS is being realized by the EuroGammaS Association lead by INFN
- Two energy lines are foreseen
 - Low energy: $0.2 \rightarrow 3 \text{ MeV}$
 - High energy: $5 \rightarrow 20 \text{ MeV}$

Gamma beam parameter	Value
Energy [MeV]	0.2 - 19.5
Spectral density [ph/s/eV]	$0.8 - 4 \cdot 10^4$
Bandwidth rms [%]	≤ 0.5
#Photons/shot within FWHM bdw.	$\leq 2.6 \cdot 10^5$
#Photons/s within FWHM bdw.	$\leq 8.3 \cdot 10^{8}$
Source rms size [µm]	10 - 30
Source rms divergence [µrad]	25 - 200
Peak brilliance [Nph/s·mm ² ·mrad ² ·0.1%bdw]	$10^{20} - 10^{23}$
Pulse length rms [ps]	0.7 - 1.5
Linear polarization [%]	> 99
Macro repetition rate [Hz]	100
Number of pulses/macropulse	32
Pulse-to-pulse separation [ps]	16

The ELI–NP γ beam

- The GBS will be operated in multibunches train mode at 100 Hz
- The single laser pulse will be recirculated 32 times to interact with the 32 ebunches from the LINAC
- The γ energy is tunable by adjusting the e⁻ beam energy

- In Compton backscattering the laser photons are scattered in a narrow cone around the e[−] direction and the energy is amplified from eV→MeV
- The radiation produced by Compton backscattering is not intrinsically monochromatic \rightarrow The γ energy is function of the emission angle
- The bandwidth can be controlled with proper collimation of the beam

The ELI–NP γ beam monitoring system

- CSPEC Compton spectrometer (INFN−FI) → Energy distribution
- NRSS Nuclear Resonant Scattering Spectrometer (INFN–CT)
 Absolute energy collibration
 - → Absolute energy calibration
- GPI Gamma beam Profile Imager (INFN−FE) → Spatial distribution
- GCAL Gamma CALorimeter (INFN−FI) → Average energy and intensity

 γ beam

GCAL: Working principle

- The calorimeter has to provide a fast (→ i.e. within a macro-pulse) measurement of the beam average energy and intensity
- Destructive measurement → Cannot be used during normal data taking It is placed on a moveable platform
- GCAL is a sampling calorimeter with a low-Z absorber
- Low−Z absorber → Dominated by Compton scattering at ELI energies
- High−Z absorber → Pair production
- The Compton cross-section decreases rapidly with energy
- The longitudinal profile of the energy deposition retains the dependence on the beam energy

GCAL: Working principle

- The expected longitudinal profile of the energy distribution is parametrized by detailed Monte–Carlo simulations done with Geant4
- The average energy of the beam is determined by fitting the measured profiles against the simulated ones
- Low beam BW → The beam intensity can be inferred from the measured total energy release

$$N_{\gamma} = \frac{\sum_{i=0}^{21} E_i^{meas}}{f(E_{\gamma})E_{\gamma}}$$

• High beam intensity

→ Low statistical error At nominal intensity in few seconds of operations the resolution is $\simeq 0.1\%$

GCAL for the ELI-NP low energy line

- GCAL for the low energy ELI-NP beam is ready
- 22 layers:
 - 7 SiStrip pads with 128 strip each
 - FE board with 7 channels + SUM
 - PE target block with O-ring
 - Frame+spacers (and positioning bars)
- Ventilation system (dry air)
- LV/HV distribution systems
- Crate to hold and carry the device

Active layer

- Si Strip technology for the active layer
 - Fast response time
 - Radiation hardness
 - Linearity

- Detectors developed by Hamamatsu
- Test structures of the CMS tracker
- Can sustain up to 100 kGy irradiation
- 128 strips all bonded together
- Depletion voltage: 200 V
- Operation voltage: 600 V
 - Saturate the drift velocity and reduce the response time
- Large area but low capacitance ($\simeq 300 \text{ pF}$)

- Cutting
- Cleaning
- Visual inspection
- C–V characterization
- Gluing 7 pads onto the read–out board
- The 7 pads have $\Delta C < 1$ pF

FE electronics

- Custom FE electronics
- Specifically designed to be very fast
- Individual read-out and analog sum
- The first two boards have connected the five central pads and the sum
- For the boards from 3 to 22 only the sum is acquired

Single Channel

Ch02

Ch04

Ch06

Analog Sum

Ch04

Ch06

op 2500

ອື້₂₀₀₀!

ADC

Typical noise is 5 ADC ch for the single channel and the 12 for the sum

o 2500 ADC COUL

1500

Time Response

- Use an IR laser to test the time response of Si Strip devices
- Pulsed laser diode PicoQuant LDH-P
- IR Laser → Can penetrate uniformly the whole depth of Si
- High Power → Can reproduce the very large energy depositions expected at ELI–NP
- High Rate → Can reproduce the same time structure of the ELI–NP beam
- Data Acquisition with CAEN digitizer V1742
- 1024 samples in a circular memory buffer
- To acquire the whole ELI–NP macro–pulse a 1 GHz sampling frequency will be used

- λ=1060 nm
- MaxPower: 21 mW
- Rate: single \rightarrow 80 MHz
- FWHM < 100 ps

Time Response

- Very fast response of detector+electronics
- Well inside the 16 ns boundary
- These tests prove the capability of our system to cope with the demanding time structure of the ELI-NP beam

Energy Response

• The energy deposition in Si detectors was tested at DEFEL (ELectrostatic DEFlector) at the LABEC facility in Firenze

- Electrostatic chopper which produces a pulsed beam:
 - Particles: p
 - Short pulses: $0.2 \rightarrow 1 \text{ ns}$
 - Adjustable average number of p/pulse
 - Energy: $E_p = 3 \text{ MeV}$
- Typical spectra contain equally spaced peaks at energies multiple of E_p

Energy Response

- Fit the spectrum with a Poisson convoluted with n gaussians
- Extract λ_p , mean_i, σ_i
- System linearity tested up to 200 MeV

2500

λ**_=7**

Summary

- A low–Z sampling calorimeter has been realized to meet the extraordinary properties of the ELI–NP γ beam
- It will measure the average energy and intensity of the beam exploiting the energy dependence of the γ absorption cross–section
- The active layer is made by Si detectors read out by a custom FE electronics
- Test performed with an IR laser have shown the capability of the device to cope with the time structure of the ELI-NP beam
- Test performed at the LABEC facility in Firenze show the excellent linearity of the device in the energy range relevant to ELI–NP beam

Additional Material

Gamma Beam System

$$E_{\gamma} = 2\gamma_e^2 \frac{1 + \cos\theta_L}{1 + (\gamma_e \theta_{\gamma})^2 + a_0^2 + \frac{4\gamma_e E_L}{m_0 c^2}} E_L$$

- The recirculator is needed to match the time structure of the e⁻ beam with the laser one
- Mirror system to provide 32 collisions between the laser light and the e⁻ micro-bunches
- The laser pulses are focussed on the same IP
- Same incident angle

• For head–on collisions and the back–scattered γ in the e⁻ direction

$$E_{\gamma} \simeq 4 \gamma_e^2 E_L$$

• $\gamma_e = 1/\sqrt{(1-\beta^2)}$ and E_L energy of the laser photons

Absolute energy calibration with the NRSS

- NRSS is one of the four detectors which form the the monitoring system of the ELI–NP γ beam
- It detects the resonant condition between the beam energy and selected, well known, nuclear levels of given target nuclei
- → Can provide an absolute energy calibration for GCAL and CSPEC
- External shell of BaF₂ crystals for fast counting to detect the establishment of the resonant condition
- Inner core made by a LYSO crystal for precise identification of the resonant energy (in this configuration the surrounding BaF₂ crystals act as Compton shield)

