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• A new silicon tracker will be installed during the HL-LHC upgrade in 2025 

• Unprecedented requirements for the ATLAS Inner Tracker

• High radiation level: up to 1016 neq/cm2, 1Grad TID

• High particle rate: occupancy, bandwidth

ATLAS-TDR-025, April 2017
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Outer Inner

Time resolution [ns] 25 25

Particle Rate
[kHz/mm2]

1000 1000 10 000

Fluence [neq/cm2] 2x1015 1015 2x1016

Ion. Dose [Mrad] 80 50 > 1000

• Depleted Monolithic Active Pixel Sensors (DMAPS) are emerging as a 
promising alternative for the outer layers

• Commercial CMOS process

• No bump bonding, simple assembly

High Granularity, low material

Low power, low cost

New advancements in imaging 
CMOS processes: HV/HR

Full depletion 𝒅~ 𝝆 ∙ 𝑽

Fast charge collection, high 
efficiency

ATLAS Phase II Upgrade: ITK
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DMAPS: Large Vs Small Collection Electrode
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Large Collection Electrode – LF-Monopix Small Collection Electrode – TJ-Monopix

• Small capacitance, 𝑪 ≅ 𝟑𝒇𝑭⟹ Low Power
• Small pixels (Electrode distance): High granularity
• Less sensitive to crosstalk
• Full depletion can be achieved by modifying the

process ⟹ radiation tolerance increase
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• Large capacitance 𝑪 ≅ 𝟑𝟎𝟎 − 𝟒𝟎𝟎𝒇𝑭
• Higher analog power, sensitive to crosstalk
• Uniform, strong drift field, high radiation tolerance

and detection efficiency
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Small Collection Electrode – Modified process
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• Commercial 180nm CMOS imaging process
• High resistivity p-epitaxial substrate (>1ΚΩ∙cm)
• Process modification (CERN & foundry):

Implantation of an n-type planar layer
• Two opposite pn-junctions are formed that

fully deplete the sensing volume
• A potential minimum is formed that enhances

charge collection under the deep p-well

W.Snoeys, doi.org/10.1016/j.nima.2017.07.046 

• Reduced charge sharing
• Charge collection time is enhanced and spread is reduced
• No significant performance degradation after irradiation

Rise time (ns)

Amplitude (mV) Amplitude (mV)

H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008



Column-Drain Readout Architecture
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• FE-I3 based approach (pixel priority arbitration)
• Well established capabilities (b-layer)
• Proven by architecture simulation to be capable

of handling the hit rate of the ITK outer layers
• Simple in-pixel logic (small pixels & reduced

crosstalk)



Column-Drain Readout Architecture
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1. Time stamp is distributed
in the matrix



Column-Drain Readout Architecture
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1. Time stamp is distributed
in the matrix

2. Hit information (timing &
ToT) stored in the pixel



Column-Drain Readout Architecture
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1. Time stamp is distributed
in the matrix

2. Hit information (timing &
ToT) stored in the pixel

3. Readout initiated by a
token. Priority arbitration
over the shared bus



Large-Scale Demonstrators
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A) Large collection electrode: LF-Monopix (Bonn, CPPM, IRFU)
• 129x36 pixel matrix, 50x250μm2 pixel size, 10x9.5mm2 chip size
• Synchronous column-drain readout architecture, 8-bit ToT resolution
• ≅300mW/cm2 analog power consumption
• High breakdown voltage (-280V)
• 2500 e- threshold with 100e- dispersion (can be tuned to 1500e- with noise tuning)
• 120-240 e- ENC with 30-70 e- dispersion (flavor dependent)
• 10-12μV/e- gain

I. Caicedo, Bonn

Leakage current

1015 neq/cm2 @ -27.5oC



Large-Scale Demonstrators
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A) Large collection electrode: LF-Monopix (Bonn, CPPM, IRFU)

T. Hirono, BonnI. Caicedo, Bonn

• Breakdown voltage remains high (<-200 V) after irradiation to 1015 neq/cm2

• No loss in gain after irradiation to 1015 neq/cm2

• ENC increases by 150e- due to ≅1Mrad background TID
• High detection efficiency (98,9%) even after irradiation up to 1015neq/cm2 with

noise occupancy << 10-6 hits/BX

Gain and noise Efficiency after irradiation 1015 neq/cm2
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Large-Scale Demonstrators

B) Small collection electrode: TJ-Monopix, MALTA (CERN, Bonn)

• Encouraging results show that the modified process sensor enables increased
radiation tolerance combined with very small sensor capacitance

• Enables the design of an optimized, low noise & low power analog front end

• Design of two large-scale demonstrator DMAPS, with integrated in-pixel
readout logic, to meet the ALTAS ITK outer layer specifications

TJ-Monopix: 1x2cm2

• Synchronous column – drain readout 
architecture

• 6-bit ToT information
• Standard pixels with PMOS reset
• Leakage compensation pixels
• Frontside biased AC coupled pixels

MALTA: 2x2cm2

• Novel asynchronous readout 
architecture

• Time-walk based charge information
• Standard pixels with different reset 

mechanisms
• Analog output voltage clipping
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Low Power Optimized Front End

• Design motivation: To take advantage of the high input voltage, a
voltage amplifier can take the place of a standard CSA and can be
optimized for minimal power consumption and fast timing response

𝑽𝒊𝒏 =
𝒆−𝒒𝒆
𝑪

≅
𝟎, 𝟐𝒇𝑪

𝟑𝒇𝑭
≅ 𝟔𝟓𝒎𝑽

• For a typical input charge close to the MPV (1250e-):

• The analog output node is stabilized at low frequencies by active
feedback using M1

• M3 acts as a source follower to avoid loading the input node (IN)
• M4 is a cascode device to increase the gain at the high impedance

output node (OUTA)
• Efficient current usage (the same branch current powers the source

follower and the amplification stage)
M1

M2

M3

M4

Operating principle
derived from the
ALPIDE detector

𝑮𝒂𝒊𝒏 =
𝑽𝑶𝑼𝑻𝑨
𝑸𝑰𝑵

≅ 𝟎. 𝟒 ൗ𝒎𝑽
𝒆− 𝑷𝒐𝒘𝒆𝒓 = 𝟎. 𝟗𝝁𝑾

𝑬𝑵𝑪 ≅ 𝟏𝟐𝒆−

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 ≅ 𝟑𝟎𝟎𝒆−

Amplifier
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Low Power Optimized Front End

DiscriminatorAmplifier
• Simple discriminator design due to the high gain
• Two options for the sensor baseline reset, diode or 

PMOS device
• Enclosed layout of critical transistors for increased 

TID tolerance

Full Front End
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TJ-Monopix Chip Design

40 μm

3
6

 μ
m

2x2 Pixel Layout

• 1x2cm2 size, 224x448 pixel matrix
• 4 Flavors, Individual readout per flavor

1. Improved low power column bus readout
2. Standard PMOS input reset
3. Adaptive input reset (Leakage compensation)
4. Frontside HV biased AC coupled pixels

• Small pixel size: 36x40 μm2

• Low power: < 𝟔𝟓𝒎𝑾/𝒄𝒎𝟐

• Low threshold dispersion, no in-pixel tuning
• Design and layout strategies to minimize crosstalk



15moustakas@physik.uni-bonn.de PM 2018 – Isola d’Elba 29/05/2018

TJ-Monopix Measurement Results

2nd flavor: PMOS reset I) PWELL=-5V, PSUB=-20V

• Injection scan of the whole flavor with reverse bias applied
• PWELL mainly influences the detector capacitance, PSUB the bulk depletion
• Different deep p-well coverage across the column, to test the effect on 

depletion and charge collection

REM DPW – top half of each column (112 pixels)

FULL DPW – bot half of each column (112 pixels)
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TJ-Monopix Measurement Results

• Threshold mean≅ 270e-, total dispersion ≅ 31e-. The dispersion of the front-end is less due to 
the added dispersion of the small injection capacitance

• Higher threshold and dispersion for the removed DPW region (lower input signal)
• ENC mean ≅ 11e-, dispersion ≅ 0.8 e-. (In agreement with simulation)

2nd flavor: PMOS reset I) PWELL=-5V, PSUB=-20V

Threshold ENC
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TJ-Monopix Measurement Results

Standard flavor (PMOS reset)

AC coupled pixels with frontside HV biasing

• 55FE spectrum of two different flavors 
using the analog output of special 
analog monitoring pixels

• Cleary visible Kα and Kβ peaks
• Higher amplitude for the HV flavor due 

to the higher saturation input voltage
• FWHM ≅ 𝟓𝟓e-, ENC≅19e- (after 

subtraction of the Fano noise)

FWHM≅ 𝟓𝟓e-
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TJ-Monopix Measurement Results

• TJ-Monopix chips were irradiated up to to 1015 neq/cm2, and are fully functional
• 55FE spectrum of the HV AC coupled flavor for irradiated and unirradiated samples was acquired using the full 

digital readout (6-bit ToT information)
• The Kα peak voltage is lower due to the different front end settings that were applied because of the increased

noise after irradiation (higher threshold)

55FE spectrum 

I. Caicedo, Bonn
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MALTA measurement results

• Timing response to 90Sr source
• Most of the hits are in-time
• Hits outside in-time region are shared hits

T. Kugathasan FEE 2018
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MALTA measurement results

• Charge collection timing remains fast after irradiation to 1015 neq/cm2

T. Kugathasan FEE 2018
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Conclusions & Outlook

• DMAPS large scale demonstrator chips were successfully implemented, to prove the feasibility of CMOS DMAPS for the 
harsh radiation environment of the outer layers of ALTAS ITK

• Two different concepts were tested: Large and small collection electrode

• Radiation tolerance of the large collection electrode designs is high and the efficiency is >98% after irradiation to 
1015 neq/cm2 (LF-Monopix)

• The advantage of the small collection electrode design is the very small detector capacitance that leads to low 
power consumption, low noise and low crosstalk. ENC ≅ 10e, Low total power consumption: ≅ 110mW/cm2 (TJ-
Monopix, even lower for MALTA due to the asynchronous readout)

• Increased radiation tolerance is achieved via a process modification. Source tests (55FE and 90Sr) indicate that  good 
spectra and timing after irradiation to 1015 neq/cm2 are conserved after irradiation, while the electronics remain fully 
functional

A) Conclusion

B) Outlook
• Test beam measurement of TJ-Monopix and MALTA took place at ELSA and SPS (ongoing)

• Successful operation and correlation with the ANEMONE telescope (MIMOSA + FEI4)

• Data analysis is ongoing
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Thank you!
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Backup

MIO BOARD (FPGA) + USB GPAC (Analog Support) DUT (TJ-Monopix)

• Hardware based on the MIO (multi – input – output board, 
GPAC (general purpose analog card)

• Both MIO2 and MIO3 are supported
• Firmware and communication and slow control based on 

the basil framework
• Python based control and data analysis software

Software available at: https://github.com/SiLab-Bonn/tjmonopix-daq (still under development)

https://github.com/SiLab-Bonn/tjmonopix-daq
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Backup
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Backup
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Backup

H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008

90Sr spectrum: Modified process after irradiation – Investigator chip

Rise time (ns)Amplitude (mV)
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Backup

Correlation with the FEI4 timing plane Correlation with the M26 (track reconstruction) planes

• Successful integration with the ANEMONE telescope: 6 MIMOSA26 planes + 1 FEI4 plane for timing
• Online monitor functionality implemented
• Ongoing data analysis


