

CMOS Monolithic Pixel Sensors based on the Column-Drain Architecture for the HL-LHC Upgrade

<u>K. Moustakas</u>¹, M.Barbero³, I. Berdalovic², C. Bespin¹, P. Breugnon³, I. Caicedo¹, R. Cardella², Y. Degerli⁴, N. Egidos Plaja², S. Godiot³, F. Guilloux⁴, T. Hemperek¹, T. Hirono¹, H. Krüger¹, T. Kugathasan², C. A. Marin Tobon², P. Pangaud³, H.Pernegger², P. Riedler², P. Rymaszeweski¹, E. J. Schioppa², W. Snoeys², M. Vandenbroucke³, T. Wang¹ and N. Wermes¹

¹Physikalisches Institut, Bonn University, ²CERN, ³CPPM/Aix-Marseille Université, ⁴CEA/IRFU

ATLAS Phase II Upgrade: ITK

	ATLAS- LHC	ATLAS -HL-LHC	
		Outer	Inner
Time resolution [ns]	25		25
Particle Rate [kHz/mm ²]	1000	1000	10 000
Fluence [n _{eq} /cm²]	2x10 ¹⁵	10 ¹⁵	2x10 ¹⁶
Ion. Dose [Mrad]	80	50	> 1000

- A new silicon tracker will be installed during the HL-LHC upgrade in 2025
- Unprecedented requirements for the ATLAS Inner Tracker
 - High radiation level: up to 10¹⁶ n_{eq}/cm², 1Grad TID
 - High particle rate: occupancy, bandwidth
- Depleted Monolithic Active Pixel Sensors (DMAPS) are emerging as a promising alternative for the outer layers
 - Commercial CMOS process
 - No bump bonding, simple assembly

High Granularity, low material Low power, low cost

DMAPS: Large Vs Small Collection Electrode

Large Collection Electrode – LF-Monopix

- Large capacitance $C \cong 300 400 fF$
- Higher analog power, sensitive to crosstalk
- Uniform, strong drift field, high radiation tolerance and detection efficiency

$$au_{CSA} \approx \frac{1}{g_m} \frac{C}{C_f}$$
 $ENC_{thermal}^2 \approx \frac{4}{3} \frac{kT}{g_m} \frac{C}{\tau_f}$

moustakas@physik.uni-bonn.de

Small Collection Electrode – TJ-Monopix

- Small capacitance, $C \cong 3fF \Longrightarrow$ Low Power
- Small pixels (Electrode distance): High granularity
- Less sensitive to crosstalk
- Full depletion can be achieved by modifying the process ⇒ radiation tolerance increase

$$\frac{S}{N} \approx \frac{Q/C}{\sqrt{g_m}} \sim \frac{Q/C}{\sqrt[m]{P}} \Longrightarrow P \sim \left(\frac{Q}{C}\right)^{-m}$$

PM 2018 – Isola d'Elba 29/05/2018

Small Collection Electrode – Modified process

W.Snoeys, doi.org/10.1016/j.nima.2017.07.046

- Commercial 180nm CMOS imaging process
- High resistivity p-epitaxial substrate (>1KΩ·cm)
- Process modification (CERN & foundry): Implantation of an n-type planar layer
- Two opposite pn-junctions are formed that fully deplete the sensing volume
- A potential minimum is formed that enhances charge collection under the deep p-well

Reduced charge sharing Charge collection time is enhanced and spread is reduced No significant performance degradation after irradiation H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008 Frequency 600 Induence V substrate -6V V substrate -6V 止 ₅₀₀-Kα Standard Process Modified process 80 400 Kα 60 300 40 Kβ 200 Kβ 20 100 പിസ്സ് 100 120120 Signal (mV) Signal (mV) Amplitude (mV) Amplitude (mV) Standard Process : Peak = 27.8ns, RMS = 5.0ns 0.25 Modified Process 1: Peak = 22 2ns. RMS = 3.7ns Modified Process 2: Peak = 23.2ns, RMS = 4.2ns 0.2

moustakas@physik.uni-bonn.de

- FE-I3 based approach (pixel priority arbitration)
- Well established capabilities (b-layer)
- Proven by architecture simulation to be capable of handling the hit rate of the ITK outer layers
- Simple in-pixel logic (small pixels & reduced crosstalk)

Large-Scale Demonstrators

A) Large collection electrode: LF-Monopix (Bonn, CPPM, IRFU)

- 129x36 pixel matrix, 50x250µm² pixel size, 10x9.5mm² chip size
- Synchronous column-drain readout architecture, 8-bit ToT resolution
- \cong **300mW/cm²** analog power consumption
- High breakdown voltage (-280V)
- 2500 e⁻ threshold with 100e- dispersion (can be tuned to 1500e⁻ with noise tuning)
- 120-240 e⁻ ENC with 30-70 e- dispersion (flavor dependent)
- 10-12 μ V/e⁻ gain

Large-Scale Demonstrators

A) Large collection electrode: LF-Monopix (Bonn, CPPM, IRFU)

- Breakdown voltage remains high (<-200 V) after irradiation to 10¹⁵ n_{eq}/cm²
- No loss in gain after irradiation to 10¹⁵ n_{eq}/cm²
- ENC increases by 150e- due to \cong 1Mrad background TID
- High detection efficiency (98,9%) even after irradiation up to 10¹⁵n_{eq}/cm² with noise occupancy << 10⁻⁶ hits/BX

Large-Scale Demonstrators

UNIVERSITÄT BONI

B) Small collection electrode: TJ-Monopix, MALTA (CERN, Bonn)

- Encouraging results show that the modified process sensor enables increased radiation tolerance combined with very small sensor capacitance
- Enables the design of an optimized, low noise & low power analog front end
- Design of two large-scale demonstrator DMAPS, with integrated in-pixel readout logic, to meet the ALTAS ITK outer layer specifications

MALTA: 2x2cm²

AB

- Novel asynchronous readout architecture
- Time-walk based charge information
- Standard pixels with different reset mechanisms
- Analog output voltage clipping

TJ-Monopix: 1x2cm²

- Synchronous column drain readout architecture
- 6-bit ToT information
- Standard pixels with PMOS reset
- Leakage compensation pixels
- Frontside biased AC coupled pixels

Low Power Optimized Front End

• For a typical input charge close to the MPV (1250e⁻):

 $V_{in} = rac{e^- q_e}{C} \cong rac{0,2fC}{3fF} \cong 65mV$

- Design motivation: To take advantage of the high input voltage, a voltage amplifier can take the place of a standard CSA and can be optimized for minimal power consumption and fast timing response
- The analog output node is stabilized at low frequencies by active feedback using M1
- M3 acts as a source follower to avoid loading the input node (IN)
- M4 is a cascode device to increase the gain at the high impedance output node (OUTA)
- Efficient current usage (the same branch current powers the source follower and the amplification stage)

$$Gain = \frac{V_{OUTA}}{Q_{IN}} \cong 0.4 \, \frac{mV}{e^{-}} \qquad \frac{ENC \cong 12e^{-}}{Threshold \cong 300e^{-}} \qquad Power = 0.9\mu W$$

Low Power Optimized Front End

- Simple discriminator design due to the high gain
- Two options for the sensor baseline reset, diode or PMOS device
- Enclosed layout of critical transistors for increased TID tolerance

TJ-Monopix Chip Design

2x2 Pixel Layout

- Small pixel size: 36x40 µm²
- Low power: $< 65 \ mW/cm^2$
- Low threshold dispersion, no in-pixel tuning
- Design and layout strategies to minimize crosstalk

- 1x2cm² size, 224x448 pixel matrix lacksquare
- **4 Flavors, Individual readout per flavor**
 - Improved low power column bus readout 1.
 - **Standard PMOS input reset** 2.
 - Adaptive input reset (Leakage compensation) 3.
 - 4. **Frontside HV biased AC coupled pixels**

Pixels

224

¹¹² Columns

TJ-Monopix Measurement Results

2nd flavor: PMOS reset I) PWELL=-5V, PSUB=-20V

• Injection scan of the whole flavor with reverse bias applied

AB

JNIVERSITÄT

- PWELL mainly influences the detector capacitance, PSUB the bulk depletion
- Different deep p-well coverage across the column, to test the effect on depletion and charge collection

FULL DPW – bot half of each column (112 pixels)

2nd flavor: PMOS reset I) PWELL=-5V, PSUB=-20V

- Threshold mean ≅ 270e⁻, total dispersion ≅ 31e⁻. The dispersion of the front-end is less due to the added dispersion of the small injection capacitance
- Higher threshold and dispersion for the removed DPW region (lower input signal)
- ENC mean \cong **11e**⁻, dispersion \cong **0.8 e**⁻. (In agreement with simulation)

TJ-Monopix Measurement Results

FE55 Spectrum of unirradiated W4, PMOS FLAVOR, -5V,-5V 120

- ⁵⁵FE spectrum of two different flavors using the analog output of special analog monitoring pixels
- **Cleary visible Kα and Kβ peaks**
- Higher amplitude for the HV flavor due to the higher saturation input voltage
- **FWHM** \cong 55e⁻, **ENC** \cong **19e⁻** (after subtraction of the Fano noise)

- TJ-Monopix chips were irradiated up to to 10¹⁵ n_{eq}/cm², and are fully functional
- ⁵⁵FE spectrum of the HV AC coupled flavor for irradiated and unirradiated samples was acquired using the full digital readout (6-bit ToT information)
- The Kα peak voltage is lower due to the different front end settings that were applied because of the increased noise after irradiation (higher threshold)

- Timing response to ⁹⁰Sr source
- Most of the hits are in-time
- Hits outside in-time region are shared hits

MALTA measurement results

• Charge collection timing remains fast after irradiation to 10¹⁵ n_{eq}/cm²

Conclusions & Outlook

A) Conclusion

- DMAPS large scale demonstrator chips were successfully implemented, to prove the feasibility of CMOS DMAPS for the harsh radiation environment of the outer layers of ALTAS ITK
- Two different concepts were tested: Large and small collection electrode
 - Radiation tolerance of the large collection electrode designs is high and the efficiency is >98% after irradiation to 10¹⁵ n_{eq}/cm² (LF-Monopix)
 - The advantage of the small collection electrode design is the very small detector capacitance that leads to low power consumption, low noise and low crosstalk. ENC ≅ 10e, Low total power consumption: ≅ 110mW/cm² (TJ-Monopix, even lower for MALTA due to the asynchronous readout)
 - Increased radiation tolerance is achieved via a process modification. Source tests (⁵⁵FE and ⁹⁰Sr) indicate that good spectra and timing after irradiation to 10¹⁵ n_{eq}/cm² are conserved after irradiation, while the electronics remain fully functional

B) Outlook

- Test beam measurement of TJ-Monopix and MALTA took place at ELSA and SPS (ongoing)
- Successful operation and correlation with the ANEMONE telescope (MIMOSA + FEI4)
- Data analysis is ongoing

Thank you!

moustakas@physik.uni-bonn.de

22

- Both MIO2 and MIO3 are supported
- Firmware and communication and slow control based on the basil framework
- Python based control and data analysis software

Software available at: <u>https://github.com/SiLab-Bonn/tjmonopix-daq</u> (still under development)

- It is assumed that in the final prototype
 - 2 double columns per r.o. unit => 512 × 4 pixels
 - 20 MHz column bandwidth: 50 ns (2 BC) per hit readout
 - => a simple math: max. allowed hit rate = 1/column bandwidth = 0.5 hit/r.o.unit/BC
- Inefficiency caused by trig. memory pileup not included here => pure matrix performance
- Data loss increases steeply beyond 600 MHz/cm² => ~ 0.44 hits/r.o.unit/BC

PMOS reset flavor gain map for different PWELL and PSUB bias voltages

⁹⁰Sr spectrum: Modified process after irradiation – Investigator chip

H. Pernegger et al., DOI 10.1088/1748-0221/12/06/P06008

- Successful integration with the ANEMONE telescope: 6 MIMOSA26 planes + 1 FEI4 plane for timing
- Online monitor functionality implemented
- Ongoing data analysis

Correlation with the FEI4 timing plane

Correlation with the M26 (track reconstruction) planes