

Development of Ultra Fast Silicon Detector for 4D tracking

Francesca Carnesecchi on behalf of the UFSD & RSD groups (University and INFN of Bologna, Torino and Trento, Centro Fermi Roma)

Why 4D tracking

with the next generation of colliders (HL-LHC, FCC) New challenge in HEP: probability of merged vertices >10%

HL-LHC: beamspot time spread (150-180) ps, pileup 150 - 200

CMS Simulation

<µ>	3D Merged Vertex Fraction
50	3.3%
200	13.4%

Why 4D tracking

New challenge in HEP: with the next generation of colliders (HL-LHC, FCC) probability of merged vertices >10%

HL-LHC: beamspot time spread (150-180) ps, pileup 150 - 200

2

UFSD: a perfect candidate for 4D tracking

Silicon detectors **before** UFSD... **Spatial** resolution —> 10's µm **Time** resolution —> few ns ...after, with UFSD Spatial resolution —> 10's µm Time resolution —> few 10's ps

HL-LHC: ATLAS and CMS are considering upgraded detectors with UFSDs

Other applications thanks to the good time resolution, e.g. in particle with **PID** and in medical Physics with **PET**

UFSD

Key ingredients for a good time resolution:

- High S/N
- Fast signal, trise (high slew rate, dV/dt)

Standard Silicon detector: I_{max} and dV/dt independent on thickness

UFSD

G ~ 20-30: best S/N, G > 50: S/N start to decrease

UFSD

G ~ 20-30: best S/N, G > 50: S/N start to decrease

HPK, 0.785 mm²
FBK, 1x1 mm²
CNM, 5x5 mm²

For a planar detector geometry
$$\sigma_t^2 = \sigma_{TDC}^2 + \sigma_{current}^2 + \sigma_{time\ slewing}^2 + \sigma_{jitter}^2$$

with a saturated velocity, the σ_t main factor are: Landau fluctuations and Jitter

For a planar detector geometry

Time resolution

$$\sigma_t^2 = \sigma_{TDC}^2 + \sigma_{current}^2 + \sigma_{time\ slewing}^2 + \sigma_{jitter}^2$$

with a saturated velocity, the σ_t main factor are: Landau fluctuations and Jitter

6

HPK data in a **beam test** setup (H8), at **CERN** → time VS CFD (%) for different thickness

- · Goal reached
- Go thin!
- BUT thinner detectors (e.g. 35 µm) means larger capacitance and hence smaller signal...electronic issue

The UFSD should withstand to 2-9 10¹⁵ n_{eq}/cm² ! Several prototypes studied:

- Different doping concentration
- Different temperature diffusion (LD, HD)
- Gallium (Ga) instead of Boron (B)
- **Carbon** (C) co-implanation

9

The UFSD should withstand to 2-9 10¹⁵ n_{eq}/cm² ! Several prototypes studied:

- Different doping concentration
- Different temperature diffusion (LD, HD)
- Gallium (Ga) instead of Boron (B)
- Carbon (C) co-implanation

acceptor creation, $g_{eff} = 0.02 \text{ cm}^{-1} = \text{const}$

 $N_A(\phi) = g_{eff} \cdot \phi + N_A(0) e^{-c \cdot (N_A(0)) \cdot \phi}$

Acceptor density (N_A) with fluence (ϕ):

Initial acceptor removal, *c* depends on:

- Irradiation type
- Acceptor types
- Initial acceptor density

Low *c* → less gain layer disappearance

Initial acceptor removal, *c* depends on:

- Irradiation type
- Acceptor types
- Initial acceptor **density**

Acceptor Removal "c" values

Receipt for a high radiation resistant detector:

- Continue using **Boron**
- Add Carbon
- Make the gain layer thin (LD)

Preliminary results measured with β source, at low temperature, for W6 (**B**+**C**) in Santa Cruz

INF

FERM

ALMA MATER STUDIORUM Università di Bologna

MUSEO STORICO DELLA FISICA

CENTRO STUDI E RICERCHE

Preliminary results measured with β source, at low temperature, for W6 (**B**+**C**) in Santa Cruz

The time resolution, for a 50 µm thickness, is between **30-40 ps** up to a fluence of **1.5 10¹⁵ n**_{eq}/cm² !

Future R&D

 n^{++}

LMA MATER STUDIOR

First Idea: optimise the geometry until the physical limit of 30 µm gap. 96% fill factor.

"Low Gain Avalanche Diodes for Precision Timing in the CMS Endcap", Marco Costa, Poster contribution

Second Idea: taking example from SiPM, using a trench design. About 100% fill factor.

Conclusion

- A 4D tracking will become necessary for the HL-LHC to fight against the higher pileup foreseen
 - It can be achieved using the UFSD, based on the LGAD technology, builded nowadays from three different manufacturer
- The time resolution simulations have found to be totally in agreement with experimental data
 - It has reached the goal of 35 ps for a 50 µm (can go to ~23 ps for a 35 µm but readout electronic issue)
- The UFSD radiation hardness has been improved, thanks to FBK UFSD new prototypes: based on a LD or B+C gain layer
 - The time resolution, for a 50 µm thickness, is between 30-40 ps up to a fluence of 1.5 10¹⁵ n_{eq}/cm²
- The R&D on UFSD is still ongoing both to improve the radiation hardness and other important feature of the detector