Technologies for Future Vertex and Tracking Detectors at the Compact Linear Collider (CLIC)

Simon Spannagel, CERN on behalf of the CLICdp Collaboration

14th Pisa Meeting on Advanced Detectors
Elba, 29 May 2018
The Compact Linear Collider

- Proposed linear collider with two-beam acceleration: Achieves field gradients of ~100 MV/m
- Construction in 3 stages: 380 GeV → 3 TeV
- Physics goals: **precision SM Higgs, Top and BSM physics**
- Vertex & Tracker design driven by beam structure
 - Trains of 312 bunches, 50Hz repetition rate
 - Spacing between bunches: 0.5ns
- High bunch density leads to interactions between bunches
 - Large background from $\gamma \gamma \rightarrow$ hadrons / e+e- (beamstrahlung):
 - ~100 particles/BX within acceptance (at 3TeV)
 - Mostly in forward direction
 - Timing cuts can reduce impact
CLIC Vertex & Tracking Detectors

• All-silicon vertex & tracking detectors

• Requirements:
 • **Low mass** – 0.2% χ_0 per vertex layer
 • **Low power consumption** – 50mW/cm$^{-2}$ in the vertex, air-flow cooling
 • **High single-point resolution**
 • Vertex: $\sigma_{sp} \sim 3\,\mu m$
 • Tracker: $\sigma_{sp} \sim 7\,\mu m$
 • **Precise time stamping** ~5ns

• Large area tracker (140m2) with high granularity, elongated pixels (1 – 10mm)
Silicon Technologies

Hybrid

HV-CMOS

HR-CMOS

SOI

Capacitive

ELAD
Hybrid Pixel Detectors

- Traditional design of HEP silicon pixel detectors with independent parts:
 - Sensor (high-resistivity silicon with pn-junction)
 - CMOS readout chip with small feature size
 - Solder bumps as interconnect
- Allows extensive functionality on-pixel using mixed-mode CMOS circuits
- Small pixel cell sizes achievable, 25μm – 250μm
- Bump bonding
 - Cost-driving factor on detector production
 - Limiting factor for the pixel pitch
 - Limiting factor for device thickness: stability
The CLICpix2 Prototype

- Readout ASIC to meet CLIC vertex requirements
- Timepix/Medipix chip family
 - 128 x 128 pixels (3.2 x 3.2 mm² active area)
 - 65nm CMOS, 25μm x 25μm pitch
 - Per-pixel charge and arrival time measurement
- Shutter-based acquisition
- Power pulsing of the pixel matrix
- Challenge: bump bonding of sensors with 25μm pitch
- Successfully tested in lab & test beam measurements, characterization ongoing
Monolithic High-Voltage CMOS Sensors

- Evolution of Monolithic Active Pixel Sensors (MAPS)
 - Electronics and sensor on same wafer
 - Lower mass than hybrids, no bump-bonding
 - Fully integrated: amplification & readout
- Goal: Charge collection through drift instead of diffusion
 - Fast charge collection
 - Larger depleted volume, more charge collected
- Shield electronics via deep collection diode surrounding electronics
 - Allows high voltage to be applied to substrate
- Challenges:
 - Large collection diode means large input capacitance (& increased power consumption, reduced SNR)
 - Full depletion has yet to be achieved (high resistivity substrates and backside bias)
The ATLASpix Prototype (ATLAS)

- Fully integrated chip designed for ATLAS ITk upgrade
 - Under investigation in view of CLIC tracker requirements
 - AMS 180 nm HV-CMOS process, substrates with 20-1000Ωcm
 - 25 x 400 pixels, 130μm x 40μm pixel pitch
 - Charge amplifier, discriminator in pixel, charge and arrival time measurement in periphery
- Promising results from first beam tests
- Ongoing: beam tests with improved readout system to characterize timing performance

Efficiency ~99.5%
Resolution $\sigma_{SP} \sim 13\mu m$
Monolithic High-Resistivity CMOS Sensors

- Alternative to HV-CMOS
- Electronics outside charge-collection well
 - Small collection diode reduces input capacitance
 - Form depleted region by using high-resistivity substrate
- No special HV design rules for electronics necessary
- Lower bias voltage than HV-CMOS
 - Avoid electronics shielding to compete with collection diode
- Process modifications allow full lateral depletion
 - Higher backside bias possible due to isolation of electronics by depleted region
The Investigator Prototype Chip (ALICE)

- Analog prototype – digitization off-chip
- Two different TowerJazz 180nm processes
 - Different doping profiles/depletion approaches
- For 28 x 28μm² pitch: 99.3% efficiency, $\sigma_t < 5$ns, $\sigma_{SP} \sim 4$μm
- Good spatial and time resolution at very low threshold
- Future plans:
 - Design of fully integrated chip for CLIC tracker: CLICTD
 - Low resolution interesting for CLIC vertex?
Monolithic Silicon-on-Insulator Sensors

- Monolithic sensor on single wafer with high-resistivity substrate
- Separate sensor/electronics by insulation oxide layer

- Cracow SOI test chip in 200nm LAPIS SOI process, different parameters:
 >= 30μm x 30μm pitch, single-SOI & double-SOI, different r/o schemes
- First test beam results for 500 μm thickness, 30x30 μm² pitch: Efficiency > 99%, σ_{SP} ~ 2μm
- Ongoing work:
 - Analysis of prototype test-beam data
 - Production of vertex test chip CLIPS
Capacitively Coupled Detectors

- Combination of “traditional” readout chip and HV-CMOS active sensor
- Only analog part (amplification) in sensor
- Advantages:
 - Large signal from amplifier while rather simple circuitry in HV-CMOS
 - Can use full feature set of readout chip CMOS process
 - Chips can be glued, avoids bump-bonding
- Challenges:
 - Gluing requires precise alignment
 - Main influence: distance – good uniformity required
CLICpix2 + C3PD

- Two generations of active sensors (CCPDv3, C3PD) in AMS 180 nm HV-CMOS process,
 - 10-1000Ωcm substrates, 25 x 25μm² pitch
- First test beam measurements performed
 - Efficiency > 90% , $\sigma_t \sim 7$ns, $\sigma_{SP} \sim 8$μm
- Finite-element simulation of capacitive coupling
- Ongoing work:
 - Evaluation of high-resistivity sensors for larger depletion zone
 - Glue-process optimization
Enhanced Lateral Drift Detectors

- Position resolution in thin sensors limited to pitch / √12 (almost no charge sharing)
- New sensor concept: **enhance charge sharing**
 Enhanced LAteral Drift sensors (ELAD)
 - Close to theoretical optimum: linear charge sharing
- Deep implantations to alter the electric field
 - Lateral spread of charges during drift, cluster size ~2
 - Improved resolution for same pitch
- Challenges:
 - Complex production process, adds cost
 - Have to avoid low-field regions (recombination)
- Simulations ongoing: implantation process, sensor performance
- First production in 2018: test structures, strips and test sensors with Timepix3 footprint (55μm pitch)
Prototype Simulation
Simulation of Detector Prototypes: **Allpix Squared**

- Powerful simulation tools required to understand prototypes and optimize designs
- Monte Carlo simulation complementary to device modeling like TCAD
 - Account for stochastic nature of processes: high statistics samples
 - Simulate full setup (potentially multiple detectors)
- Combine tools: **Geant4 + TCAD fields + Front-end simulation**
- Provides access to main detector characteristics (resolution, efficiency…)
- Implements drift-diffusion model to model charge flow in sensor:
- Simulation of transient effects for timing under development

Drift animations of electrons/holes through a planar silicon sensor
Verification With Test Beam Data

- **CLICdp** Timepix3 Telescope + DUT: **50μm planar sensor**
- Simulate device only with few parameters taken from data
 - Dimensions, bias/depletion voltages, temperature, threshold
 - Reconstruction with same cuts & corrections
- Very good agreement between data and simulation
In a nutshell...
Summary & Outlook

- Proposed CLIC linear e+e- collider poses challenges to silicon detectors
 - ... excellent spatial and temporal resolution, minimum material
 - ... ambitious detector design concept
- Comprehensive R&D program for CLIC silicon detectors
 - Many technologies and concepts under investigation
 - Most initial requirements shown to be achievable, 3μm resolution still to be reached
- New and validated simulation tools help R&D and prototyping
- Ongoing developments:
 - New HR-CMOS chip for tracker: CLICTD
 - New SOI chip for vertex: CLIPS
 - Production and testing of a first ELAD silicon sensor
2013 - 2019 Development Phase
Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators.

2020 - 2025 Preparation Phase
Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation.

2026 - 2034 Construction Phase
Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning.

2019 - 2020 Decisions
Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC).

2025 Construction Start
Ready for construction; start of excavations.

2035 First Beams
Getting ready for data taking by the time the LHC programme reaches completion.
CLIC Accelerator Complex

CLIC layout at 3 TeV

CLIC accelerating structure

CERN-2012-007
CLIC Detector Concept

- low-mass **vertex detector** with ~25x25 μm² pixels
- **silicon tracker**
- fine-grained PFA calorimetry, 1+7.5 Λ_{i}, W-ECAL + Fe-HCAL
- 4 T **solenoid**
- return yoke with muon ID
- Complex instrumented forward region
Experimental Conditions at CLIC

- CLIC beam structure drives design
 - Spacing between bunches: 0.5 ns
 - Trains of 312 bunches, 50 Hz repetition rate
 - Transverse beam size ~nm
- Interactions between bunches
 - Large experimental background: \(\gamma \gamma \rightarrow \text{hadrons} / \text{e+e-} \) (beamstrahlung):
 ~100 particles/BX within acceptance @ 3TeV
 - Mostly in forward direction
- **Low radiation** environment
 - Factor \(10^4 \) lower than at LHC
The CLICdp Timepix3 Telescope

• Beam telescope with 7 Timepix3 planes
 • Operated in SPS H6, typically 120 GeV pions
 • Timepix3 assemblies: 300 μm thick, 55 μm pitch
 • Resolution on DUT: spatial ~2μm, timing ~1 ns
 • High rate, capable of > 1×10^6 Tracks/spill
• x/y linear movement + rotation stage for the DUT
• 3 scintillator triggers in coincidence (for DUT)
• Motion stage for the full telescope, allows to operate parasitically to other users in the same beam line
HR-CMOS: Standard/Modified Process

Standard, in-pixel total cluster size:

Modified, in-pixel total cluster size:
Performance of Thin Planar Sensors

- Test beam studies: performance of thin sensors
 - CLIC Timepix3 telescope for reference, 2 μm resolution
 - Timepix/Timepix3 ASICs, 55 μm pitch

- High detection efficiency even for 50 μm sensor @ normal operating conditions
- Resolution limited by charge sharing / cluster size

Micron/IZM: 100 μm sensor on 100 μm Timepix

CLICdp work in progress
Caribou – Multi-chip modular DAQ system

- Variety of DAQ systems for pixel detector prototypes
 - Requirements very similar
 - Not very innovative from functional point of view
 - Repeated integration effort into (test beam) DAQ

- Solution: versatile, modular readout system
 - Collective effort for maintenance and extension
 - Support for wide range of current & future prototypes
 - Suited for laboratory and test beam measurements
Caribou – Multi-chip modular DAQ system

Xilinx ZC-706 + (optional) FMC + interface board + chip board

- Zynq System-on-Chip platform: FPGA + ARM Cortex A9 + …
 - Run Linux OS + DAQ software directly on the board
 - Access through network (1/10 Gbit ETH/SFP+)
 - SoC also contains (hardware) periphery: I2C, SPI modules, ...
- FMC cable allows to place main board in safe distance to beam
Caribou – The CaR interface board

- FMC mezzanine board
- Hosts: power supplies, ADCs, current/voltage regulators, clock generator, pulse injectors, SERDES links
- RJ45 connector to interface TLU
- SEAF connector to chip board
- Designed for re-usability: contains all functionality & all expensive components
Caribou – Application-specific chip board

- Board with minimum functionality
 - Routing between SEAF connector and front-end
 - Special buffers (LVDS-CML …)
- Low production cost, simple design
Caribou – System-on-chip layout

Periphery
- I2C
- SPI
- ETH
- SD Card
- ...

ARM Cortex A9

“peary” distribution

Custom Linux drivers
peary DAQ software

AXI4 Interface

FPGA

Registers
DMA

SerDes receivers
Custom components
...

Memory Controller

DDR RAM

DDRAM

Memory Controller

Front-end chip

application specific
Caribou – Software architecture

- kernel drivers
- system
- DAQ library
- user space

- caribouHAL
- caribouDeviceMgr
- caribouDevice
- CLICpix2
- C3PD
- ... Configuration, Logging etc.

- DAQ Client
- Lab Testing
- CLI

- caribouHAL
- caribouDeviceMgr
- caribouDevice
- CLICpix2
- C3PD
- ... Configuration, Logging etc.
The Allpix Squared Framework

- Written in modern C++
- Prov. central components
 - Convenient user interface
 - Logging, configuration
 - Geometry and transformations
- Implement physics in independent modules
 - Plug & play concept
 - IO using ROOT TTrees
- Loading lib, parallelization...
Detector Models

- Different detector types available
 - Monolithic detectors
 - Hybrid detectors w/ bump bonds
- Easy configuration through model files
 - Give it a name, decide on the type
 - Set detector parameters
- Some model files already shipped with the framework, at the moment:

 ATLAS FE-I3, FE-I4, CMS PSI46/dig, Medipix3, Timepix3, CLICpix, CLICpix2, Mimosa23, Mimosa26

```python
1  type = "hybrid"
2  number_of_pixels = 256 256
3  pixel_size = 55um 55um
4  sensor_thickness = 300um
5  chip_thickness = 700um
6  # ...
7  [support]
8  thickness = 1.76mm
```
Documentation & Manuals

- Extensive User Manual ~115 pages (PDF/TeX)

- Well-documented code (Doxygen)

- Module documentation (Markdown)
Active-Edge Sensors: Guard Ring Layouts

- Different guard ring layouts implemented
 - No guard rings, floating guard rings
 - Grounded guard rings, via additional row of bump bonds
- Edge distance: distance between last n-implant and cut edge

No Guard Rings

Floating Guard Ring

Grounded Guard Ring

![Diagram](image)
Edge Performance

- Test beam studies of sensor performance at the edge
 - CLIC Timepix3 telescope for reference, 2μm track resolution
 - Timepix3 with active-edge sensors as DUT

- Tracks from edge folded into 2x2 pixel matrix
 - Increase statistics
 - End of pixel matrix: dashed line
 - Physical cutting edge of sensor: solid line
Active-Edge Sensor, 50μm thickness

- Without GR and with floating GR: fully efficient up to the physical sensor edge
- With grounded GR: signal/efficiency loss
Active-Edge Sensors: TCAD Simulations

- Different guard ring layouts in Synopsys Sentaurus
- 2D simulation at implant center, 50μm thick, edge distance 20μm

- Field lines end at pixel
- No charge loss expected
- Most field lines at pixel
- Small charge loss
- Some lines end on ground ring
- Significant charge loss