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FAIR @ Darmstadt
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CBM	(Compressed	Barynonic
Matter	Experiment)

▸ Modularized Start Version 
(MSV) of FAIR currently under 
construction

▸ first beams (p,…, U) expected 
2024

▸ Ebeam= 11 - 29 AGeV



FAIR Construction Site
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▸ areal view



FAIR Construction Site
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▸ excavation of the SIS100 tunnel



FAIR Construction Site
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▸ excavation of the SIS100 tunnel (May 2018)
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CBM Physics Mission
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▸ Exploration of the QCD phase 
diagramm at high µB and moderates 
temperatures
▸ de-confinement and chiral 

transitions
▸ equation-of-state relevant for 

neutron stars and neutron star 
mergers
▸ utilizing rare probes: di-

lepton, multi-strangeness
▸ Note: this is generally low-pt physics
▸ CBM sub-detectors must be capable 

to measure at rel. low momentum but 
at high interaction rates (∼ 10	𝑀ℎ𝑧)	



CBM Fixed Target Detector Setup
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▸ Silicon Tracking System 
(STS)

▸ main tasks: momentum 
and secondary vertex 
determination



1	Tm	superconducting dipole magnet
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inside magnet:	thermally
insulating box

side walls removable for
maintenance
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8	stations of the silicon tracking system

≈ 1	𝑚

heat exchanger plates (blue)	 for fast,	
triggerless front-end	 readout
electronics
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cut view inside of the STS

vacuum beam	pipe box	for mounting front-end	ASICs
~	900	silicon sensors on	CF	ladders
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CF Ladder with Sensors

sensor sizes:		
CiS/	Germany,	Hamamatsu/Japan

▸ 6.2		x			2.2	cm2

▸ 6.2		x			4.2	cm2

▸ 6.2		x			6.2	cm2

▸ 6.2		x	12.4	cm2

sensor type: double-sided silicon-strip

▸ 285/320 ± 15 µm thick
▸ impact of  thicker sensors (400 

or 500 µm) under evaluation
▸ n-type silicon
▸ 1024 strips of 58 µm pitch on both 

sides
▸ angle front/back: 7.5°/0°

sensors
steeply falling multiplicity density



Challenges I: Material Budget
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▸ best possible momentum resolution at low momenta

⇒ minimize multiple scattering 		Θ,=
./.1234
5⋅7⋅8

⋅ 9
9:
		⇔ minimize material budget

sensorultra-thin micro cablesFEB with r/o ASICs

▸ basic functional unit is a module, consisting of:

▸ geometry/multiplicity density dictates 18 different module types!
▸ different sensor, different cable, different bandwidth of r/o

FEE outside of 
acceptance

inside of acceptance



Challenges II: Signal/Noise
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▸ Design goal:  ENCtotal < 1000e RMS
▸ ENCFEE < 500e RMS (complex, many contributions)

▸ Noise scales with total capacitance:
▸ CT = Cdet + Ccable + CESD_n/p + Cgs1 + Cgd1+CPCB

⇒ careful design of µ-cables to minimize capacitance

Front-End ASIC: 



Read-out Cables
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▸ main design constraints: capacitance, 
bonding scheme, production yield

▸ signal layer:  64 lines - 116 µm pitch, 14 
µm thick, on 10 µm polyimide
▸ 32 cables/sensor
▸ mesh layer between signal and 

ground layer to decrease 
capacitance 

▸ alternative mounting schemes:
▸ Aluminum-Polyimide technology, 

tab bonding (LTU Ltd, Kharkov, 
Ukraine)

▸ Copper-Polyimide technology, 
stud bonding (KIT, Karlsruhe) 

Hans Rudolf Schmidt

mesh spacer

cable layers



Measured Cable and Sensor Capacitances
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▸ cable total capacitance 
Ccable = 0.382 ±0.020 pF/cm

▸ sensor interstrip capacitance
▸ 12 cm sensor (Hamamatsu)

Cinterstrip = 0.38±0.2 pF/cm

▸ design goal: cable capacitance/cm2 should not exceed interstrip value of 
sensor

▸ cable length up to 55 cm!



Material	Budget	&	Simulation	Results
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▸ material budget ranges from 𝑋/𝑋: 	 = 0.3	(sensor only ) 
to 𝑋/𝑋: 	 = 1 − 1.5%	(sensors + cables) resulting in:

▸ reconstruction efficiency (simulation): 𝜖 ≈ 98%
▸ momentum resolution (simulation): D8

8
≈ 1.5− 2%

Hans Rudolf Schmidt

materal budget/station momentum resolutionreconstruction efficiency



Challenges III: Radiation Tolerance

18

▸ life time fluence: Φ3G = 10HIJKL	
.M 𝑐𝑚OP

▸ 5-10 month of running at 10 MHz
▸ corresponding full depletion voltage: 𝑉RS ≈ 120	𝑉
▸ to recover charge collection eff.: 𝑉RS > 350	𝑉
▸ high current or breakdown essentially sets limit 

to the lifetime

𝑉RS ≈ 120	𝑉

type inversion with fluence charge collection efficiency irradiated sensors

break-down voltage

Hans Rudolf Schmidt



Challenges	IV:	Cooling
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▸ effects in high radiation environment:

▸ leakage current increase with fluence
V,Φ	and temperature T

⇒ sensor cooling mandatory to avoid 
thermal runaway

⇒ keep sensors permanently at
𝑇 = −10°𝐶fluence

U d
ep
le
ti
on
[V
]
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up tp 6 mW/cm2 at end of life 
time (Φ3G = 10HIJKL	

.M 𝑐𝑚OP)

dead

alive

𝑇 = 20°𝐶 𝑇 = −10°𝐶

𝐼[3\] 𝑉,Φ = 𝛼𝑉Φ

𝐼[3\] 𝑇 = 𝐼[3\],P_/
𝑇
293𝐾

P

exp −
𝐸e\8 𝑇
2𝑘g

1
𝑇 −

1
293𝐾



Cooling	Requirements
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▸ fast	readout	electronics	produces	40	kW	thermal	power	within	insulation	volume

thermal	insulation	box

sensors:	-10	°C

r/o	electronics:	40	kW
(fast,	triggerlesss)

▸ Efficient	high	power	CO2 cooling	system	under	development	 to	neutralize	40	kW	
thermal	power	from	r/o	electronics!

▸ but:	innermost	 sensors	produce	up	to	6	mW/cm2 – cooling	by	forced	N2

convection?? Hans Rudolf Schmidt



Cooling	R&D
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▸ optimization of:
▸ heat exchanger (P=120 bar) 
▸ thermal interfaces

▸ large scale cooling demonstrator
see poster by Kshitij Agarwal



STS Functional Demonstrators
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▸ module test at COSY, Feb. 2018 
▸ proton beam, 1.7 GeV/c 
▸ 128 channels /side read out
▸ microcable 25 cm long

▸ design parameters verified
▸ ENC = 1090 ±150 e  (n)
▸ ENC = 1350 ±200 e  (p) (?)
▸ signal-to-noise:  15±3

▸ miniSTS in demonstrator experiment 
miniCBM at GSI/SIS18 in 2018/19
▸ up to 4 layers of silicon
▸ full system test including streaming 

readout

Hans Rudolf Schmidt

miniSTS

single module 



Summary
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▸ CBM STS design optimized wrt
▸ material budget and radiation tolerance

▸ sensor R&D finished
▸ sophisticated QA methods developed (see poster by E. Lavrik)
▸ cooling R&D ongoing

▸ sensor production readiness review (April 2018)
▸ ready for tendering
▸ sensor purchasing & module production 2019-2020

▸ participating laboratories
▸ GSI Darmstadt (QA, assembly, integration)
▸ JINR Dubna (QA, assembly)
▸ University of Tübingen (QA, cooling)
▸ KIT Karlruhe (cables, assembly)
▸ AGH, Cracow (readout ASICs)
▸ JU, Cracow (readout)
▸ WUT, Warsaw (readout)



backup
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Interaction Rates
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▸ utilizing rare probes requires high 
luminosity (high interaction rates)

▸ Rint= 10 MHz, several OoM
higher than at colliders at 
comparable collision energies

▸ CBM sub-detectors must be 
capable to measure at rel. low 
momentum but at high rates



4 layer STS
8 layer GEM tracker

▸ Mutual interest by CBM groups from
Germany and Russia to install, 
commission and use 4 CBM-like 
Silicon Tracking Stations in BM@N 
in 2019 – 2021

▸ Au beams up to 4.5 GeV/u

STS Large Demonstrator II
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BM@N
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