

The LHCb VELO Upgrade

Vinícius Franco Lima On Behalf of the LHCb VELO Upgrade 29/05/18

LHCb Detector

Heavy Flavour Experiment

Precise vertex reconstruction

Tracking and momentum resolution

Particle identification capabilities

5m

LHCb Detector Upgrade

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Integrated Recorded Luminosity (1/fb)

By the end of Run II many analysis become statistically limited.

Increasing Luminosity in order to achieve 50fb⁻¹ in Run III.

 $4x10^{32} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 20x10^{32}\text{cm}^{-2}\text{s}^{-1}$

Upgrade Trigger implemented on software only.

Readout: 1 MHz → 40 MHz

The VELO Upgrade

Full 40 MHz readout, Luminosity 5x Higher.

Change from Silicon Microstrips to Hybrid Pixel Detector.

Data Bandwidth of 20 Gbit/s for central ASICS.

Microchannel CO2 cooling, sensor temperature <-20°C

VELO Upgrade

Expected fluence in the most irradiated regions up to 1.5x10¹⁴ 1MeV n_{eq}/ cm² per fb⁻¹

Radiation flux follows r^{-2.3} shape.

Proximity to interaction region: 5.1mm

Total Integrated Luminosity: 50fb⁻¹ !

0.2 Cm⁻⁵ 1.8 $1 \text{ MeV } n_{eq}^{1}$ 10^{14} 0.8 0.6 × 0.4 × 0.4 0.2 0.0

RF Foil

Module PRR to happen soon. Validation of DAQ, Cooling, Mechanics.

4 Sensors per module 52 modules

Silicon Sensors

VeloPix ASIC

Silicon Substrate

Develop procedure and tests for production environment.

Mechanics

Silicon substrate built with micro evaporative cooling.

DAQ

DAQ

VeloPix

Data driven, binary readout, 25 ns timestamping.

Design based on the Timepix3 ASIC.

> 65k pixels/ASIC 55µm x 55µm pixels **Triggerless readout**

Optimised for high speed readout.

Peak Rate: 800 Mhits/s/ASIC Max ASIC Bandwidth: 20.48 Gb/s

Radiation Hard up to 400 MRad

VeloPix Hybrid

	openPIXEL											
File View Help												
Min Value		Max V	Max Value auto			32	64	96	128	160	192	;
0.0 0	-	+ þ.1	0	- +								
Pixel info- [98,43]		Stats AVR:	Stats AVR:0.000									
0.000 Colors		RMS Satu	RMS:0.000 Saturated:75									
listogram			96									
					128							
					160							
					192							
				-	224							
0.00	0.03	0.05	0.08	0.10	0	32	64	96	128	160	192	
ile Equali	sation AS	IC 0/mas	kEileE dat	habeol								

Equalisation provides uniform ASIC operation.

Radioactive source measurements allow double check of single pixel response.

File Strontium90_ASIC_0_Run1/accumulatedPictureAlpha.dat loaded.

Charge Collection

Max Operational Bias Voltage: 1000V

Minimum collected charge per MIP: 6000e-

The sensors must be able to operate under these conditions up to 8x10¹⁵ 1MeV n_{eq}cm⁻²

(MPV)

Charge

Collected

LHC

Efficiency

Voltage (V)

What about Sensor HV Tolerance?

Thanks to Michael Moll, for the use of probe setup.

Probe Card Jig

Bell Jar Jig

Summary

Microchannel cooling is the cooling solution to be used by the VELO Upgrade.

DAQ structure for the VeloPix control and readout are now in place.

VELO Module Production should start June-July.

Bump Bonding of Sensors to VeloPix ASICS currently on preproduction.

First data taking after LS2 in 2021!

Backup

LHCb Detector Upgrade

By the end of Run II many analysis become statistically limited.

Increasing Luminosity in order to achieve 50fb⁻¹ in Run III.

4x10³² cm⁻²s⁻¹→ 2x10³³cm⁻²s⁻¹

Upgrade Trigger implemented on software only.

Readout: 1 MHz → 40 MHz

Radiation dose (10¹⁶ n_{eq} / cm^2)

• Check the flatness of the surface using the white light interferometer.

Charge Collection and Depletion Depth

Determined using Grazing Angle Technique.

DUT clusters associated with a track if within a 10 ns window.

Correction for Timewalk effect is applied using charge collection time of tracks passing wishing 20µm of implants

Charge Collection and Depletion Depth

Neutron Uniformly Irradiated to Full Fluence

Cluster Sizes Distributions

Non-Irradiated Micron n-on-p

Post Irradiation Micron n-on-p

