

The CMS Tracker Upgrade for the High Luminosity LHC

Martin Delcourt on behalf of the Compact Muon Solenoid collaboration

28 May 2018

CMS Tracker Upgrade for the HL-LHC Introduction

- The LHC will be upgraded in 2024 for a High-Luminosity phase
- Great opportunity for physics but challenge for experiments
 - High instantaneous luminosity
 - High integrated luminosity

CMS Tracker Upgrade for the HL-LHC Introduction

 To maintain the detector's outstanding performance, its tracker (among others) will be upgraded

- The new tracker will need to:
 - Be radiation tolerant
 Total radiation dose 10x higher
 - Have a higher granularity
 Keep channel occupancy at percent level
 - Reduce its material budget
 Improves tracking performance
 - Participate to Level-1 trigger
 Necessary to stay effective

Plan of the talk

Sketch of one quarter of the **current** (phase 1) CMS tracking system Pixel detector, single sided and double sided strip modules.

• Plan of the talk:

- Inner Tracker Upgrade
- Outer Tracker Upgrade
- New layout and expected performances
- L1 tracking

CMS Tracker Upgrade for the HL-LHC Inner tracker

- Radiation tolerance is key for the inner tracker
 - Up to 1.2Grad and 2.3 10^{16} n_{eq}/cm^2 for 3000 fb⁻¹
 - Possibility of replacement if needed
- Two n-in-p type sensors are being considered
 - Thin (100-150 μm) planar sensors
 - 3D sensors, higher radiation tolerant but more expensive
 - → Would be limited to highest fluence regions

CMS Tracker Upgrade for the HL-LHC Inner tracker

- To keep a low occupancy in the inner tracker, smaller pixels are considered.
 - 50x50 µm or 25x100 µm (6 x smaller than now)
- Pixel Read Out Chip (PROC) will have to be radiation hard and cope with a hit rate up to 3 GHz/cm²
 - Being developed within RD53 (CMS-ATLAS collaboration)

Two different flavours, **one** or **two** rows of two PROCs (~16.4x22.0 mm²)

Outer tracker

- For L1 triggering, data has to be sent for every bunch crossing
 - Full data would exceed bandwidth
 - Data reduction is needed at detector level
 2GeV cut → data reduction of 10x to 100x

- High transverse momentum tracks can be selected by correlating hits on two sensors
 - "Stubs" read-out at 40MHz
 - Full data read-out if triggered (~750kHz)

Outer tracker

- Outer tracker modules:
 - Planar n-in-p, 200µm thick sensors
 - Binary read-out chips
 - Zero-suppression and data aggregation at module level

Outer tracker

2S CBC3 mini-module

- Prototypes are being tested and characterized in beam
 - Stubs are correctly produced
 (p_T emulated by rotating module in beam)
 - High efficiency

PS mapsa-light mini-module

Friday

Recent developments in the CBC3, a CMS micro-strip readout ASIC for track-trigger modules at the HL-LHC Dr. Sarah Seif El Nasr-Storey

Tilted barrel to optimize stub efficiency

Sketch of one quarter of the **phase 2** CMS tracking system

- Tilted barrel to optimize stub efficiency
- Reduction of material budget

Sketch of one quarter of the **phase 2** CMS tracking system

- Tilted barrel to optimize stub efficiency
- Reduction of material budget
- Extended eta coverage from $|\eta| \leq 2.4$ to $|\eta| \leq 4$
 - Increases forward acceptance
 - Mitigates pile-up effects in forward region

Expected performances

- Significant improvement expected in p_T and d_0 resolution
- 90% tracking efficiency for tracks from tt events with < 2% fake rate
- Work in progress!
 - Geometry is being optimized
 - Efficiency at $|\eta| \sim 1.2$ is being addressed

Offline tracking

CMS Tracker Upgrade for the HL-LHC L1 track finding

CMS prompts using series of the series of th

- Tracking at L1 is a challenging task
 - Tracks need to be produced within ~ 5μs
 - Two different all-FPGA solutions are considered
- Tracklet approach
 - "Tracklets" formed from stubs in adjacent layers
 - Extrapolate to tracks, minimize chi² (linearised chi² fit)
 - Remove duplicates

- Hough transform approach
 - Select track candidate through Hough transform
 - Minimize chi² (Kalman Filter)
 - Remove duplicate

L1 track finding

CMS pounds unity trinduced

- Demonstrators were set-up for both approaches
 - Simulated event used as input
 - Similar results obtained
 - Tracks produced within timing constraints
- Work being done to merge approaches

Tracklet demonstrator

CMS Tracker Upgrade for the HL-LHC Summary

- The phase-2 tracker upgrade is necessary in order to maintain the detector performance
- The new design will allow to keep tracking performance under a high pile-up and radiation environment
- Tracks will be sent to the CMS level-1 trigger at 40 MHz
- Design is well advanced
 - many prototypes have been produced and tested
 - the upgrade concepts have been validated
 - mechanics, integration and installation concepts well advanced
- Final prototyping and EDR are awaiting us!

The CMS Outer Tracker Upgrade for the High Luminosity LHC

Martin Delcourt on behalf of the Compact Muon Solenoid collaboration

28 May 2018

Backup - Why do we need a track trigger?

Backup - About cooling

Figure 11.4: Schematics of the 2PACL cooling system concept as used in the CMS pixel Phase-1 upgrade.

Backup - Mechanical view

Backup - Read out

Backup - Outer tracker sensor irradiation

Backup - Outer tracker beam test

