Studies of transition radiation using silicon on a TimePix3 chip: first results and plans

Enrico Jr. Schioppa¹ and Florian Dachs^{1,8}

on behalf of

Jerome Alozy¹, Nikita Belyaev², Michael Campbell¹, Michael Cherry³, Florian Dachs¹, Semen Doronin , Konstantin Filippov², Fabio Gargano⁴, Erik Heijne¹, Serguei Konovalov⁵, Dimitrii Krasnopevtsev², Xavi Llopart¹, Francesco Loparco⁵, Valerio Mascagna⁴, Nicola Mazziotta⁵, Heinz Pernegger¹, Daniil Ponomarenko², Michela Prest⁴, Roman Radomskii², Christoph Rembser¹, Anatoli Romaniouk², Evgeny Shulga², Serge Smirnov², Yury Smirnov², Mattia Soldani⁴, Paolo Spinelli , Daria Sergeeva², Alexandr Savchenko², Enrico Jr. Schioppa^{1,} Doug Schaefer⁶, Mikhail Strikhanov², Alexey Tischenko², Petr Teterin², Vladimir.O Tikhomirov, Erik Vallazza⁴, Martin van Beuzekom⁷, Bas van der Heijden⁷, Konstantin Vorobev², Konstantin Zhukov⁵

¹ CERN, Geneva, Switzerland

² MEPHI, Moscow, Russia

- ³ Louisiana Un., USA
- ⁴ Como, Italy
- ⁴ Lebedev, Russia
- ⁵ Bari Un., Italy
- ⁶ Chicago Un., USA
- ⁷ Nikhef, Amsterdam, The Netherlands
- ⁸ TU Vienna, Austria

What is transition radiation?

- Highly relativistic particle, gamma~10³
- TR yield is low, $\sim 1\% \rightarrow$ detectors are made of **multiple layers of radiators**
- TR is in the X-ray range (keV few tens of keV)
- TR is emitted in the **forward** direction (few mrad)
- For a single boundary, intensity ~ gamma
- For multiple boundaries, interference puts a saturation limit at $\gamma_{sat} = 0.6 \omega_1 \frac{\sqrt{l_1 l_2}}{m_1 m_2}$
- TR emission starts at a **threshold** $\gamma_{sat} = \frac{l_1 \omega_1}{c}$
 - \rightarrow **Particle identification** in a given gamma range can be achieved by optimizing the radiator parameters

TR theoretical spectrum

Example: the ATLAS Transition Radiation Tracker (TRT)

Motivation for more studies

- Electron-hadron separation works only up to $\gamma \sim 500$. At higher values, the **TR yield** for hadrons approaches the one of electrons
- At γ ~ 3x10³, the TR yield saturates (need γ ~ 10⁵ at future colliders and for cosmic rays)
- Gaseous detectors can be substituted by pixel detectors. These will allow to achieve particle identification by measuring both energy and angular information of TR photons
- E.g.: QCD measurements at the LHC
 - \cdot Hadrons produced as small angles
 - Need to separate p, K and π in the 1-6 TeV range
- E.g. 2: nuclear charge and energy identification in cosmic ray experiments

Timepix3

- Hybrid
- 1.4 cm x 1.4 cm
- 256 x 256 pixels
- 55 um x 55 um pixel size
- Single photon counting
- Spectral sensitivity on single quanta
- For this experiment, 500 um silicon sensor

The SPS setup in June 2017

one arm, modified

Some pictures

The Timepix3 telescope and DUT

The whole setup, view from upstream

Concept

ToT calibration

Fluorescence (targets Ca, Cu, Zr, Ag) + test pulses

 $\rightarrow\,$ rescale factor of ~8%

All pixels resolution curves

Alignment and tracking

Alignment and tracking is done with the Proteus framework [3]. Many thanks to M. Kiehn.

Event reconstruction

Quantum mechanics at its finest

Outlook: tracking is not needed

Very first results

Credit: E. Shulga, Y. Smirnov, A. Savchenko

ω, [keV]

Another example

Ongoing effort to implement full differential TR spectrum in GEANT4

Conclusion and plans

- Transition Radiation Detectors are useful to achieve **particle identification**
- For future collider and cosmic ray experiments, TR **angular and spectral information** must be exploited
- First tests with a **Timepix3 pixel detector** have shown encouraging results
- The analysis of the 2017 data is being finalized, together with the implementation of **MC simulations**
- New beam time in June 2018
 - \cdot No need of a telescope
 - Will measure GaAs sensor, for better spectral sensitivity at high energy

References

[1] B. Dolgoshein, *Transition radiation detectors*, NIM A326 (1993) 434-469, http://ivanik3.narod.ru/Vacuum/DolgosheinNIMdet.pdf

[2] ATLAS Collaboration, *Inner Detector TDR, Vol. I*, 30 April 1997, https://cds.cern.ch/record/331063/files/ATLAS-TDR-4-Volume-I.pdf

[3] https://gitlab.cern.ch/unige-fei4tel/proteus/

[4] N. Belyaev at al., *Measurements of angular distribution and spectrum of transition radiation with a GridPix detector, 2017*. Phys.: Conf. Ser. 934 012049, http://iopscience.iop.org/article/10.1088/1742-6596/934/1/012049/pdf

Datasets

Runs	Beam type	Beam energy	Run type	Radiator
18-22	pions+electrons	20 GeV	Phys	Mylar, 1 set, 2 or 3 or 4
23-27	pions+electrons	20 GeV	Phys	Mylar, 3 sets, 2,3,4
28-31	pions+electrons	20 GeV	Phys	Polyethylene, 3 sets
32-36	pions+electrons	20 GeV	Phys	Polypropylene, 15 µm
50-51	pions+electrons	20 GeV	Phys	Polypropylene, 62 µm 3 sets
52	pions+electrons	20 <u>GeV</u>	Phys	Dummy (2 pieces of plexiglass)
53	pions+electrons	20 <u>GeV</u>	Phys	Air, no radiator
76	pions+electrons	20 <u>GeV</u>	Phys	Fibre
77	pions+electrons	20 <u>GeV</u>	Phys	Dummy (2 pieces of <u>plexiglass</u>)
81	pions+electrons	20 <u>GeV</u>	Phys	Polypropylene, 62 µm, all (1,2,3,4,5)
49	Fe-55 source	6 <u>keV</u>	Calib	N/A
54/66	muons	180 <u>GeV</u>	Phys	Mylar, 1 set
55-56	muons	180 <u>GeV</u>	Phys	Mylar, 3 sets, 2,3,4
57	muons	180 <u>GeV</u>	Phys	Polyethylene, 1 set
58-59	muons	180 <u>GeV</u>	Phys	Polyethylene, 3 sets
60-61	muons	180 <u>GeV</u>	Phys	Polypropelene, 15 µm
62-63	muons	180 <u>GeV</u>	Phys	Polypropelene, 62 µm
64	muons	180 <u>GeV</u>	Phys	Air, no radiator
65/79	muons	180 <u>GeV</u>	Phys	Dummy (2 pieces of <u>plexiglass</u>)
78	muons	180 <u>GeV</u>	Phys	Fibre
80	muons	180 GeV	Phys	Polypropylene, 62 µm, all (1,2,3,4,5)
67	muons	120 <u>GeV</u>	Phys	Fibre
68	muons	120 <u>GeV</u>	Phys	Mylar, 1 set
69	muons	120 <u>GeV</u>	Phys	Mylar, 3 sets
70	muons	120 <u>GeV</u>	Phys	Polypropylene, 62 <u>µm</u>
71	muons	120 GeV	Phys	Polyethylene, 1 set
72	muons	120 <u>GeV</u>	Phys	Polyethylene, 3 sets
73	muons	120 GeV	Phys	Polypropylene, 15 µm
74	muons	120 GeV	Phys	Dummy (2 pieces of plexiglass)

Clustering

Clustering is done with the Proteus framework [3]. Many thanks to M. Kiehn.

"Wtf" events (just for fun)

Event selection

Fiducial volume correction

Effects of the correction

