14<sup>th</sup> Pisa Meeting on Advanced Detectors La Biodola, Isola d'Elba (Italy) May 27 - Jun 2, 2018

### Large Area Picosecond Photodetector (LAPPD) **Pilot Production and Development Status**

Photo Detectors and PID, Monday May 28, starting at 18:50

Michael J. Minot (mjm@incomusa.com), Bernhard W. Adams, Melvin Aviles, Justin L. Bond, Till Cremer, Michael R. Foley, Alexey Lyashenko, Mark A. Popecki, Michael E. Stochaj, William A. Worstell, Incom, Inc, Charlton, MA, USA; Jeffrey W. Elam, Anil U. Mane, Argonne National Laboratory, Lemont, IL, USA; Oswald H. W. Siegmund, Camden Ertley, University of California, Berkeley, CA USA; H. J. Frisch, Andrey Elagin, Evan Angelico , Eric Spieglan University of Chicago, Chicago IL, USA

# Presentation Outline

- Motivation for LAPPD
- LAPPD #25 Performance Results
- GEN II Development Status
- How Would Low Psec Timing & High Spatial Resolution Influence Your Design of Experiment?

### LAPPD Advantages

LAPPD<sup>™</sup> is an MCP based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 cm<sup>2</sup>.



## LAPPD #25 Performance Summary

| Parameter                               | LAPPD 25                                                                |  |  |
|-----------------------------------------|-------------------------------------------------------------------------|--|--|
| MCP resistance (Entry/Exit; $M\Omega$ ) | 10.7 / 14.2 MΩ at 875 V                                                 |  |  |
| QE                                      | @365 nm: Max: 10%, Mean: 7.1%, s = 0.8%                                 |  |  |
|                                         | @455 nm: Mean: 10.2%                                                    |  |  |
| Gain                                    | 7.5 ×10° @ 850/950 V (entry/exit)                                       |  |  |
| Dark rate<br>(Single 13.5 cm2 strip)    | 9.5 Cts/s cm2                                                           |  |  |
|                                         | © 50 volts on the P/C,850 V/MCP, and Threshold of<br>7.6×105 gain       |  |  |
| After pulses                            | Typical for MCP PMT - about 3.5%                                        |  |  |
| Along-strip                             | 2.8 mm RMS (measured as 33.4 psec)                                      |  |  |
| Cross-strip                             | 1.3 mm RMS                                                              |  |  |
| Time Resolution                         | 64 psec resolution TTS<br>MCP Pulse Rise time: 850 psec, FWHM: 1.1 nsec |  |  |

# Photocathode QE - LAPPD #25



12 10 50 8 QE [%] 6 0 4 2 -50 0 300 550 600 650 Wavelength [nm] -100 -100 -50 0 50 100

Large Area Photocathode production process is established QE >20% demonstrated in sealed LAPPDs

| LAPPD S/N  | <u>Ma×imum %</u> | <u>Average %</u> | <u>Minimum %</u> |
|------------|------------------|------------------|------------------|
| LAPPD #13: | 23.5             | 18.6±3.3         | 13.5             |
| LAPPD #15: | 25.8             | 22.3±3.0         | 15.7             |
| LAPPD #22: | 14.7             | 10.6             |                  |
| LAPPD #25: | 10               | 7.1              |                  |
| LAPPD #29: | 19.6             | 13.0±6.0         | 3                |
| LAPPD #30: | 22.9             | 17.2±2.5         | 13               |

LAPPD - Production & Development Status

- Light source scanned in 5 mm steps across the window
- Illumination: ~10 mm dia.
- 365 nm UV LED

Monday, May 28th, 2018

### Single PE Gain vs. MCP voltage, Tile #25



Left: Single PE Pulse height distributions, charge sensitive amplifier, and ADC, for different MCP voltages.

Middle: Average gain vs. MCP voltage (gain doubles for every 50 volts).

**Right**: Single PE Gain from unamplified charge pulses, from DRS4 waveform sampler, at MCP voltages 850/950 (entry/exit MCP).

### Spatial Resolutions - LAPPD #25

Relative time of arrival,

Along a Strip



DRS4 waveform samplers

- Pulses observed at both ends of a strip.
- Relative arrival time leads to position of charge.
- LAPPD 25: 11.4 pS/mm, Uncertainty on position is: 32 pS sigma / 11.4 pS per mm <u>=</u>

#### • <u>2.8 mm sigma</u>.

Monday, May 28th, 2018











- Position calculated by centroiding three adjacent cross-strip signals.
- Calculated position shown together with a one-s uncertainty boundary.
- <u>1.3 mm rms uncertainty</u>

## Time Resolution LAPPD #25

Testing at Iowa State University, Matt Wetstein, ANNIE Program



## GEN II LAPPD

Joint development between Incom Inc., and the University of Chicago

GEN II addresses four key developments:

- 1. A robust ceramic body,
- 2. Capacitive signal coupling: to an external PCB anode
- 3. Pixelated anodes: to enable high fluence applications,
- 4. In-situ photocathode deposition: low cost, high volume

Ceramic packaging & capacitive coupling are being implemented at Incom. In-situ photocathode remains under development at U of Chicago

### GEN II Capacitive Coupling



• B.W. Adams, et al, "An internal ALD-based high voltage divider and signal circuit for MCP-based photodetectors", Nucl. Instr. Meth. Phys. Res. A 780 (2015) 107-113

• Private Communication, Todd Seiss and Evan Angelico, University of Chicago. Inside-Out Tests of Incom Tiles, June 23, 2016

• Angelico, Evan et al., "Development of an affordable, sub-pico second photo-detector", University of Chicago, Poster 2016

#### PCB with signal-pickup pads is placed under Gen-II tile

4-GHz amplifier over the back of each pad converts signals to a differentially signal that connects to the perimeter.



Monday, May 28th, 2018

## Six Step In-situ Air-Transfer Assembly

#### Transfer the window in air and make photo-cathode after the top seal

**Step 1**: pre-deposit Sb on the top window prior to assembly





**Step 4:** Clamp assembly for high temperature bake using dual vacuum system

Monday, May 28th, 2018

**Step 2**: pre-assemble **MCP** stack in the tile-base





Step 5: Introduce Alkali vapor introduced to complete PC

U-Chicago processing chamber

LAPPD - Production & Development Status

Step 3: Position Sb coated window for sealing





Step 6: Pinch seal copper tube

11 / 15

## Sealed UC Tile #21 with In-Situ PC



### UC Tile #21 - Encouraging result - modest QE and limited lifetime (no internal getter).

Monday, May 28th, 2018

LAPPD - Production & Development Status

#### How Would Low Psec Timing & High Spatial Resolution Influence Your Design of Experiment?



Monday, May 28th, 2018

LAPPD - Production & Development Status

## Summary & Conclusions

- I. GEN II Capacitive coupling works!
  - A. Ceramic package has been demonstrated UC tile #21
  - B. In-situ PC Deposition has been demonstrated
    - Demonstrated over the entire 8x8" window
    - MCPs still work after exposure to Cs
  - C. Development Continues:
    - o Glass-to-ceramic seal
    - Improving HV distribution
    - Optimized Cs<sub>3</sub>Sb photo-cathode synthesis
- II. GEN I Incom LAPPD Pilot Production is now underway
  - A. GEN I LAPPD Available Today!
    - Artifacts to be resolved as production volume and experience increases.
    - Providing early adopters a means to explore potential of PSEC timing.
  - B. "Typical" performances meet early adopter needs:
    - $\circ$  Gain > 7X10<sup>6</sup>, or higher
    - Max PC QE (#15) Max ~ 26%, Mean > 22%
    - Time Resolution < 70 Picoseconds, and Spatial Resolution 3mm</li>

### Current Funding & Personnel Acknowledgement

- DOE, DE-SC0011262 Phase IIA "Further Development of Large-Area Microchannel Plates for a Broad Range of Commercial Applications"
- DOE, DE-SC0015267, Development of Gen-II LAPPD<sup>™</sup> Systems For Nuclear Physics Experiments
- DOE DE-SC0017929, Phase I "High Gain MCP ALD Film" (Alternative SEE Materials)
- NIH 1R43CA213581-01A Phase I Time-of-Flight Proton Radiography for Proton Therapy
- DOE, DE-SC0018445 Magnetic Field Tolerant Large Area Picosecond Photon Detectors for Particle Identification
- DOE (HEP, NP, NNSA) Personnel: Dr. Alan L. Stone, Dr. Helmut Marsiske, Dr. Manouchehr Farkhondeh, Dr. Michelle Shinn, Carl C. Hebron, Dr. Kenneth R. Marken Jr, Dr. Manny Oliver, Dr. Donald Hornback and many others.

### For more information

Michael Minot Director R&D, Incom Inc. <u>mjm@incomusa.com</u> Office - 508-909-2369 Cell - 978-852-4942

Dr. Andrey Elagin University of Chicago <u>elagin@hep.uchicago.edu</u> (630) 618-1179

Grazie!

### Selected LAPPD References & Links

- <u>http://www.incomusa.com/lappd-documents/</u>
- <u>http://psec.uchicago.edu/</u>
- Craven, Christopher A. et al <u>"Recent Advances in Large Area Micro-Channel Plates and LAPPD™"</u> TIPP'17 International Conference on Technology and Instrumentation in Particle Physics, Beijing, People's Republic of China, May 22-26, 2017
- Lyashenko, Alexey et al "<u>Further progress in pilot production of Large Area Picosecond Photo-Detectors</u> (<u>LAPPD<sup>TM</sup></u>)" New Technologies for Discovery III: The 2017 CPAD Instrumentation Frontier Workshop, University of New Mexico, Albuquerque, NM October 12-14, 2017
- Angelico, E. et al, "<u>Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode"</u>, Nuclear Instruments and Methods in Physics Research A 846 (2017) 75-80
- Ertley, Camden et al, "<u>Microchannel Plate Imaging Detectors for High Dynamic Range Applications"</u>, IEEE Transactions on Nuclear Science, 2017.
- Siegmund, Oswald et al, "<u>Microchannel plate detector technology potential for LUVOIR and HabEx"</u>, Proceedings of the SPIE, Volume 10397, id. 1039711 14 pp. (2017)
- Siegmund, Oswald et al, "<u>Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal</u> <u>Resolution</u>", Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, 2017.
- Michael J. Minot, et. al., "Pilot production and advanced development of large-area picosecond photodetectors" SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, 99680X (30 September 2016); doi: 10.1117/12.2237331
- Adams, B.W et al. "A Brief Technical History of the large-Area Picosecond Photodetector (LAPPD) Collaboration" - Submitted to: JINST arXiv:1603.01843 [physics.ins-det] FERMILAB-PUB-16-142-PPD, March, 2016
- M.J. Minot, et al., <u>Pilot production & commercialization of LAPPD™</u>, Nuclear Instruments and Methods in Physics Research A 787 (2015) 78-84