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Presentation Outline

• Motivation for LAPPD

• LAPPD #25 Performance Results

• GEN II Development Status

• How Would Low Psec Timing & High Spatial
Resolution Influence Your Design of Experiment?
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LAPPD Advantages
LAPPD™ is an MCP based photodetector, capable of imaging with single-photon sensitivity at
high spatial and temporal resolutions in a hermetic package with an active area of 400 cm2.
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• Single Pixel

• Nanosecond resolution

• High background noise

• Sensitive to magnetic fields

• Small coverage

• Bulky

• Millimeter spatial resolution

• < 100 picosecond resolution

• Very low noise

• Large Area (16X Planacon)

• Compact

• Operates in magnetic field

• 20µ Chevron Pair ALD-MCPs

• 28 silver strip Anode, 50 Ω

• Large Area, No Feedthroughs

• Borosilicate Glass Housing

• Fused Silica Glass Window



LAPPD #25 Performance Summary

Parameter LAPPD 25

MCP resistance
(Entry/Exit; MΩ)

10.7 / 14.2 MΩ at 875 V 

QE
@365 nm: Max: 10%, Mean: 7.1%, s = 0.8%

@455 nm: Mean: 10.2%

Gain 7.5 x106 @ 850/950 V (entry/exit)

Dark rate
(Single 13.5 cm2 strip)

9.5 Cts/s cm2

@ 50 volts on the P/C, 850 V/MCP, and Threshold of
7.6x105 gain

After pulses Typical for MCP PMT – about 3.5%

Along-strip
Spatial Resolution

Cross-strip

2.8 mm RMS (measured as 33.4 psec)

1.3 mm RMS

Time Resolution
64 psec resolution TTS

MCP Pulse Rise time: 850 psec, FWHM: 1.1 nsec
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Photocathode QE - LAPPD #25

• Light source
scanned in 5 mm
steps across the
window

• Illumination: ~10
mm dia.

• 365 nm UV LED
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LAPPD S/N Maximum % Average % Minimum %

LAPPD #13: 23.5 18.6±3.3 13.5

LAPPD #15: 25.8 22.3±3.0 15.7

LAPPD #22: 14.7 10.6

LAPPD #25: 10 7.1

LAPPD #29: 19.6 13.0±6.0 3

LAPPD #30: 22.9 17.2±2.5 13

Large Area Photocathode production process is established
QE >20% demonstrated in sealed LAPPDs



Single PE Gain vs. MCP voltage, Tile #25
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Left: Single PE Pulse height distributions, charge sensitive amplifier,
and ADC, for different MCP voltages.

Middle: Average gain vs. MCP voltage (gain doubles for every 50 volts).

Right: Single PE Gain from unamplified charge pulses, from DRS4
waveform sampler, at MCP voltages 850/950 (entry/exit MCP).



Spatial Resolutions - LAPPD #25
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DRS4 waveform samplers

• Pulses observed at both
ends of a strip.

• Relative arrival time
leads to position of
charge.

• LAPPD 25: 11.4 pS/mm,
Uncertainty on position
is: 32 pS sigma / 11.4 pS
per mm =

• 2.8 mm sigma.

Relative time of arrival,
for a single laser

position on the strip

Along a Strip

• Position calculated by
centroiding three adjacent
cross-strip signals.

• Calculated position shown
together with a one-s
uncertainty boundary.

• 1.3 mm rms uncertainty

Across Strips



Time Resolution LAPPD #25
Testing at Iowa State University, Matt Wetstein, ANNIE Program
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64 psec resolution TTS

Typical Single PE
Pulses

FWHM: 1.1 nsec
Rise time: 850 psec

Amplitude

Peak Gain >> 106

@ low voltages



GEN II LAPPD
Joint development between Incom Inc., and the University of Chicago

GEN II addresses four key developments:

1. A robust ceramic body,

2. Capacitive signal coupling: to an external PCB anode

3. Pixelated anodes: to enable high fluence applications,

4. In-situ photocathode deposition: low cost, high volume

Ceramic packaging & capacitive coupling are being implemented at Incom.

In-situ photocathode remains under development at U of Chicago
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GEN II Capacitive Coupling

A thin metal DC ground
plane is deposited onto the

inside of the detector.

88% of an MCP fast
signal pulse was

capacitively coupled
through the ceramic, to
strips or pads on the

outside.

• B.W. Adams,et al, "An internal ALD-based high voltage divider and signal circuit for MCP-based photodetectors", Nucl. Instr. Meth. Phys. Res. A 780 (2015) 107–113
• Private Communication, Todd Seiss and Evan Angelico, University of Chicago. Inside-Out Tests of Incom Tiles, June 23, 2016
• Angelico, Evan et al., "Development of an affordable, sub-pico second photo-detector", University of Chicago, Poster 2016

Thin Metal Ground
Plane

Inside sealing tank, ready
for window

Top window with PC
placed on Ceramic LTA

Support shims for top window

4-GHz amplifier over the
back of each pad converts
signals to a differentially

signal that connects to the
perimeter.

PCB with signal-pickup pads is placed under Gen-II tile
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Six Step In-situ Air-Transfer Assembly
Transfer the window in air and make photo-cathode after the top seal

U-Chicago processing chamber
Monday, May 28th, 2018
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Step 1: pre-deposit Sb on the
top window prior to assembly

Step 2: pre-assemble MCP stack
in the tile-base

Step 5: Introduce Alkali vapor
introduced to complete PC Step 6: Pinch seal copper tube

Step 4: Clamp assembly for high
temperature bake using dual vacuum

system

Step 3: Position Sb coated
window for sealing



Sealed UC Tile #21 with In-Situ PC

UC Tile #21 – Encouraging result - modest QE
and limited lifetime (no internal getter).

5 ns/div
4 mV/div

Photo-Sensitivity Map
4 days after Sealing

Pulses next day after sealing
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Fermilab-Chicago Psec Timing Planning Meeting
Saturday, Mar. 17, 2018: University of Chicago

Chairs: Frisch and Spiropulu

Session 1: Fermilab-Chicago Collaboration

Session 2: Increasing the Reach of the Current
Fermilab Program

Session 3: Opportunities: Energy Frontier: Colliders

Session 4: Opportunities: Neutrinos I: CP-Violation and
Ordering

Session 5: Opportunities: Neutrinos II Dirac/Majorana

Session 6: Long-Term Facility Planning

Fermilab – U of Chicago
Psec Timing Meeting

March 2018

New opportunities enabled by
PSEC timing?

Technology Agnostic!

Multiple applications were
identified.

How Would Low Psec Timing & High Spatial Resolution Influence
Your Design of Experiment?

Optical Time Projection Chamber (OTPC)

MCP-PMTs / PSEC4



Summary & Conclusions

I. GEN II - Capacitive coupling works!

A. Ceramic package has been demonstrated - UC tile #21

B. In-situ PC Deposition has been demonstrated

o Demonstrated over the entire 8x8" window

o MCPs still work after exposure to Cs

C. Development Continues:

o Glass-to-ceramic seal
o Improving HV distribution
o Optimized Cs3Sb photo-cathode synthesis

II. GEN I - Incom LAPPD Pilot Production is now underway

A. GEN I LAPPD - Available Today!
o Artifacts to be resolved as production volume and experience increases.

o Providing early adopters a means to explore potential of PSEC timing.

B. “Typical” performances meet early adopter needs:
o Gain > 7X106, or higher
o Max PC QE (#15) Max ~ 26%, Mean > 22%
o Time Resolution < 70 Picoseconds, and Spatial Resolution 3mm
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Current Funding & Personnel Acknowledgement

• DOE, DE-SC0011262 Phase IIA - “Further Development of Large-Area
Microchannel Plates for a Broad Range of Commercial Applications”

• DOE, DE-SC0015267, Development of Gen-II LAPPDTM Systems For
Nuclear Physics Experiments

• DOE DE-SC0017929, Phase I – “High Gain MCP ALD Film” (Alternative
SEE Materials)

• NIH 1R43CA213581-01A Phase I - Time-of-Flight Proton Radiography
for Proton Therapy

• DOE, DE-SC0018445 Magnetic Field Tolerant Large Area Picosecond
Photon Detectors for Particle Identification

• DOE (HEP, NP, NNSA) Personnel: Dr. Alan L. Stone, Dr. Helmut
Marsiske, Dr. Manouchehr Farkhondeh, Dr. Michelle Shinn, Carl C.
Hebron, Dr. Kenneth R. Marken Jr, Dr. Manny Oliver, Dr. Donald
Hornback and many others.
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For more information

Michael Minot
Director R&D, Incom Inc.

mjm@incomusa.com
Office - 508-909-2369

Cell – 978-852-4942

Dr. Andrey Elagin
University of Chicago

elagin@hep.uchicago.edu
(630) 618-1179



Selected LAPPD References & Links
• http://www.incomusa.com/lappd-documents/

• http://psec.uchicago.edu/

• Craven, Christopher A. et al - “Recent Advances in Large Area Micro-Channel Plates and LAPPD™” TIPP’17
International Conference on Technology and Instrumentation in Particle Physics, Beijing, People’s Republic of China,
May 22-26, 2017

• Lyashenko, Alexey et al “Further progress in pilot production of Large Area Picosecond Photo-Detectors
(LAPPDTM)” New Technologies for Discovery III: The 2017 CPAD Instrumentation Frontier Workshop, University
of New Mexico, Albuquerque, NM October 12-14, 2017

• Angelico, E. et al, “Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode”,
Nuclear Instruments and Methods in Physics Research A 846 (2017) 75–80

• Ertley, Camden et al, “Microchannel Plate Imaging Detectors for High Dynamic Range Applications”, IEEE
Transactions on Nuclear Science, 2017.

• Siegmund, Oswald et al, “Microchannel plate detector technology potential for LUVOIR and HabEx”, Proceedings
of the SPIE, Volume 10397, id. 1039711 14 pp. (2017)

• Siegmund, Oswald et al, “Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal
Resolution”, Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference,
2017.

• Michael J. Minot, et. al., “Pilot production and advanced development of large-area picosecond photodetectors”
SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, 99680X (30 September 2016); doi:
10.1117/12.2237331

• Adams, B.W et al. “A Brief Technical History of the large-Area Picosecond Photodetector (LAPPD)
Collaboration” - Submitted to: JINST arXiv:1603.01843 [physics.ins-det] FERMILAB-PUB-16-142-PPD, March, 2016

• M.J. Minot, et al., Pilot production & commercialization of LAPPD™, Nuclear Instruments and Methods in Physics
Research A 787 (2015) 78–84
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