Calibration and Commissioning of the Time Of Propagation PID Detector at the Belle II Experiment

> Alessandro Gaz KMI, Nagoya University on behalf of the Belle II TOP Group

"14th Pisa Meeting on Advanced Detector" La Biodola (Italy), May 28th 2018

The SuperKEKB e⁺e⁻ Collider

The SuperKEKB e^+e^- Collider will operate at a CM energy corresponding (or close to) the mass of the Y(4S) resonance:

A. Gaz

First collisions delivered on April 26th!

2

The Belle II Detector

- Extensive upgrade of Belle in all areas;
- Vast Physics Programme: search for New Physics in B-, D-mesons, τ decays, exotic particles, Dark Sector, ...;
- Need to cope with much harsher machine background conditions;
- Particle IDentification is one of the fundamental ingredients of the program;

Target K- π separation:

 $K(\pi)$ efficiency> 95% $\pi(K)$ mis-ID rate< 5%</td>

up to p = 4 GeV

Hadron PID at Belle II

- At low momentum, this is mostly provided by the dE/dx measurement of the Central Drift Chamber (resolution ~5%);
- Two sub-detectors cover the high momentum part of the spectrum:
 - → Barrel region: TOP;
 - Endcap region: ARICH;
- Common concept: measure the velocity β of the candidate particle from the Cherenkov cone of light emitted when passing through a medium:

$$\cos\theta_C = \frac{1}{n\beta}$$

Complement this with the momentum measured by the tracking devices and extract the most likely mass.
 May 28th 2018
 A. Gaz

Time Of Propagation Counter

photo-

sensors

- The TOP counter consists of 16 modules, each consisting of:
 - $2 \ge (135 \text{ cm} + 45 \text{ cm} + 2 \text{ cm}) \text{ quartz}$ (n = 1.47) bars; →
 - a small expansion prism at one end; →
 - a focusing mirror at the other; →
- Principle of the measurement:

Crucial requirement: resolution on the time of arrival of the Cherenkov photons must be within 100 ps. May 28th 2018 A. Gaz

channel #

mirror

Time Of Propagation Counter

The Photo-Sensor

- A charged particle produces O(100) photons in a TOP module;
- Requirement for the photo-sensor:
 - operate in single photon regime;
 - → good Quantum Efficiency (QE);
 - cope with magnetic field and backgrounds;
 - excellent time resolution;
- Our choice: Micro Channel Plate (MCP) PMT, developed and built by Hamamatsu Photonics;
- 32 MCP-PMT's (4x4 channels each) instrument one TOP module;
- NaKSbCs photocathode (average QE 29.3% at λ = 360 nm);
- Transit Time Spread (TTS) < 40ps;
- Recent intense R&D activity to extend the lifetime of the sensors (some will be replaced in ~2 years).

For more information,

see K. Inami's poster

Read-out Electronics

- Very stringent requirements:
 - → 30 kHz trigger rate;
 - → no deadtime;
 - low power consumption;
 - → ~500 MHz bandwidth;
 - excellent time resolution;
- The output of each electronics channel is sampled at 2.7GHz, with 12 bit resolution;
- No way we can transfer 265 Tbit/s, Feature Extraction (and pedestal subtraction) must be performed online.

Fundamental FEE unit: the "boardstack"

Each boardstack reads out 1/4 of a TOP module (128 channels)

The Laser Calibration System

• Important tool for calibrating the relative timing of the channels and monitoring the performance of the whole system:

A PMT pixel can be reached by different light paths (with different times)

TOP Calibration Overview

Local T₀ Calibration

- Quite complicated procedure, different light sources and photon paths give contributions to every channels: many details to take care of!
- Effectively need fine tuning for all 8192 channels of TOP;

• Current status: precision ~100 ps (but still margin for improvement!). May 28th 2018 A. Gaz

Module T_0 Calibration

• Idea: use cosmic events to align in time all TOP modules:

- Compare photon detection times for cosmic rays that hit two different modules, taking into account time of flight and different propagation times;
- Minimize a χ^2 to find the best calibration constants (one module taken as reference);

May 28th 2018

Cosmic Ray Run

- TOP joined the Global Cosmic Runs with other Belle II subdetectors since last Summer (>50M events recorded);
- Debugging opportunity + first performance assessment:

Points: detected photons

Colored bands: pdf

Very reasonable performance, despite calibration being still far from perfect!

Geometrical Alignment

- Still missing: precise determination of actual position of TOP modules;
- Strategy: select a sample of muons, and iteratively maximize the Likelihood L_{μ} varying the shifts Δx , Δy , Δz and rotation angles α , β , γ about the three coordinate axes;
- With $e^+e^- \rightarrow \mu^+\mu^-$ events, can get a precision of ~0.3 mm on the shifts and 0.3 mrad on the Δx Δy Δz rotation angles; $\Xi_{A_{0.5}}$
- Tested the procedure on cosmic data (some biases are expected).

Alignment on 5 independent samples of cosmic data. Very preliminary!

May 28th 2018

First Collision Events

Entries/100 ps

- e⁺e⁻ data taking started 1 month ago;
- TOP stably included in DAQ, should have no problem coping with the expected rates this year;
- Hit rates give a robust measurement of (gradually improving) beam background conditions;
- We can use two-track events to determine the event T_0 and align with the other subdetectors;
- Cannot show PID performance on collision data yet: we need to reprocess the data with final calibrations... and collect large samples of K_s , D^* , Λ , ... A. Gaz

Conclusions

- The TOP Counter is a novel PID detector, which will play a major role in the Belle II Physics Programme;
- Its construction was completed in May 2016 and now TOP is stably taking data with the other subdetectors;
- The calibration of the TOP Counter is a complex procedure, our target is a time resolution of < 100 ps for single photon detection;
- Preliminary results based on calibration pulses, laser, and cosmic data give a resolution of ~150 ps: not yet our goal, but we are getting there;
- We expect to have the first measurement of the TOP PID performance on collision data in a timescale of a few weeks!

Backup Slides

PID Likelihood

The expected 2D distribution of the photon hits associated to a charged particle depends on its:

- species $(\pi, K, ...);$
- → momentum;
- position of impact point on the quartz bar;
- → angles of impact;

For each track hitting a TOP module we expect ~25 photon hits.

TOP PID is performed comparing the distribution of those hits with the expected pattern for different particle hypotheses.

May 28th 2018

PID Likelihood

For each charged particle candidate we construct the extended Likelihood: Ν

$$\log \mathcal{L}_h = \sum_{i=1}^N \log \left(\frac{S_h(x_i, t_i) + B(x_i, t_i)}{N_e} \right) + \log P_N(N_e)$$

- : number of observed photons
- : number of expected photons N
- : particle hypothesis h
- S_{h} : signal distribution
- : background distribution B
- Restricting to a particular channel j at position x:

$$S_h(x_j, t) = \sum_{k=1}^{m_j} n_{kj} g(t - t_{kj}; \sigma_{kj}) \qquad \begin{array}{l} n_{_{kj}} & : \text{number of expected photons in peak k} \\ t_{_{kj}} & : expected mean time of peak k \\ \sigma_{_{kj}} & : expected width of peak k \end{array}$$

(where the sum runs over the individual peaks of the projection on the time axis);

The quantities $n_{ki}^{}$, $t_{ki}^{}$, $s_{ki}^{}$ can be expressed analytically from the • Cherenkov angle and the impact position and direction of the incident track. May 28th 2018

TOP Optics

- Stringent requirements on the quality of the TOP bars:
 - large surfaces flat to < 6.3 μ m;
 - → large surfaces parallel to < 4 arcsec (24 μ m over 1.25 m);

Front End Electronics

8k channel waveform sampling ASIC

Carrier boards: 4 ASICS + Xilinx FPGA

HV board (MCP-PMT power)

POGO pin connections to MCP-PMT modules

Board stack: 3 Carriers + SCROD SCROD: master FPGA, fiber transceivers, clock, power

Four board stacks service each iTOP module

May 28th 2018

Front End Electronics

MCP-PMT Aging

- Significant aging effect from positive ions hitting the photocathode;
- Significant improvement in the expected lifetime since beginning of construction:

MCP-PMT Aging

- In order to keep optimal sensitivity we will have to replace ~half of the PMT's in Summer 2020;
- Benchmark channel, $B^0 \rightarrow \rho^0 \gamma$:

