14th Pisa Meeting on Advanced Detectors

KM3NeT : next-generation neutrino telescope under the Mediterranean Sea

Rémy Le Breton on behalf of the KM3NeT Collaboration

AstroParticule et Cosmologie, Paris Université Paris Diderot

2018/05/28

Introduction : Deep Sea Neutrino telescopes

Concept : Detection of **Čerenkov light**

Introduction : Deep Sea Neutrino telescopes

ANTARES Neutrino Telescope :

- Feasability of deep sea neutrino telescopes
- Multidisciplinary (Earth and Sea Science)
- Lines : 12
- PMTs : 885

Next Generation : KM3NeT

- S. Adrian- Martines et al., Letter of Intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001
- Lines : 115 + 230
- PMTs : 64170 + 128340
- Improved Technology
- Multi-site

The KM3NeT Collaboration

- 51 institutes and groups
- 41 cities
- 15 countries
- 250 people

Two detectors ⇔ Same Technology

ORCA : Oscillation Research with

Cosmics in the Abyss (KM3NeT-Fr)

ARCA : Astroparticule Research with Cosmics in the Abyss (KM3NeT-It)

Digital Optical Module (DOM)

DOM :

- 43 cm of diameter
- 31 x 3" PMTs
- Directional Information
- 4π sr coverage
- Main background : ⁴⁰K
- All data to shore (1 Gb.s⁻¹ / DOM)

PMT :

- Digital Photon Counting
- Light concentrator ring
- Time-over-Threshold measurements

ANTARES

Event topologies in a neutrino telescope

Oscillation Research with Cosmics in the Abyss (ORCA)

KM3NeT-Fr Site : offshore Toulon (France)

- Main research : neutrino mass hierarchy
 - $\Rightarrow\,$ More details in the following
- Few to hundreds of GeV neutrinos
- Depth of 2500 m

ORCA block :

- 115 lines
- 23 m horizontal spacing
- I8 floors
- 9 m vertical spacing
- 8 Mton instrumented

Astroparticle Research with Cosmics in the Abyss (ARCA)

KM3NeT-It Site : offshore Capo Passero (Sicily-Italy)

- Main research : high energy neutrino astronomy
 - \Rightarrow More details in the following
- GeV to PeV neutrinos sources
- Depth of 3500 m

ARCA block (x2) :

- 115 lines
- 90 m horizontal
- 36 m vertical
- 0.5 Gton instrumented
 - \Rightarrow ORCA : 8 Mton
 - ⇒ ANTARES : 15 Mton

Production Chain : DOM and line integration

DOM Integration :

- 8 DOM integration sites (in Netherland, Italy, Germany, Greece, France and Marocco)
- Assembling of all components (PMTs, electronics, PMTs 3D support, glass sphere, optical gel)
- QA/QC tests

Line Integration :

- 6 line integration sites (in Italy, Germany, and France)
- Assembling of all components (DOM, line base, cables, line structure, buoy)
- QA/QC tests

Deployment of a Line

Line furled around spherical frame \mid Position accuracy : \sim 1 m

Inspection on the seabed (ROV)

Connection to the Network (ROV)

Unfurling of the Line

Acoustic signal emitted after connection to the network checked

Inspection of the Line (ROV)

Data taking

Examples of recorded events for ORCA (left) and ARCA (right)

Timeline and Costs

• Cost per line : ~ $300k \in$

- Thousands of Digital Optical Modules (DOM).
- Performance of KM3NeT : relies on precise timing and positioning of all detector elements.
- Complete set of instruments and tools :
 - \Rightarrow Calibration Base
 - ⇒ Instrumentation Line
 - \Rightarrow Muons
 - $\Rightarrow {}^{40}K$
 - \Rightarrow Nanobeacons
 - \Rightarrow Acoustics

Acoustic Positioning System

- DOM position must be known to properly reconstruct tracks and showers
- Measurement accuracy : \sim 10 cm

The Long Base-Line :

- Hydrophones on Calibration Base and Line Base
- Absolute positions known
- Reference system
- Acoustic Beacons on CB and LB

On each DOM :

Digital Acoustic Receiver

Optical Backgrounds and Nanobeacons

Calibration Unit

Calibration base :

- Laser Beacon :
 - \Rightarrow Time calibration (<ns)
 - \Rightarrow Water optical properties.
- Hydrophone : position of the CB on the seafloor
- Acoustic Long Baseline emitter for DOM positioning

Instrumentation line :

- Light and sound transmission
- Monitor full water column
- Measurement every 20 minutes
- Current meter
- Sound Velocimeter
- CTD probe : Conductivity, Temperature and Depth

ARCA : science program

- Provide complementary measurement of IC flux
- All neutrino flavour astronomy
- Multimessenger (continous data taking over 4π sr)
- New unknown sources
- Galactic sources

- Check neutrino emission from :
 - $\Rightarrow \text{ Galactic plane}$ $(3\sigma \text{ in } 1.3 \text{ years})$
 - $\Rightarrow \mathsf{RXJ1713}$
 - $(3\sigma \text{ in } 4 \text{ years})$
 - $\Rightarrow VelaX$ $(3\sigma in 2.5 years)$

expected ARCA performances for a diffuse flux (from Lol)

ORCA : main science program

Main goal : neutrino mass hierarchy (NMH)

- Important for theory, cosmology, $0
 u\beta\beta$
 - \Rightarrow Sensitivity better than 3σ in 4 years
- ORCA optimised for GeV atmospheric neutrinos
- Probe matter effect on ν survival and appearance probabilities with Up-Going muons

ORCA : other science topics

- Improvement of measurement of Δm^2_{32} and $heta_{23}$
- Indirect search for low mass dark matter
- Supernovae monitoring
- Earth sciences : tomography, seismology
- Sea sciences : oceanography, bioacoustics, bioluminescence

- \Rightarrow Two next-generation neutrino telescopes in the Mediterranean sea
 - New innovative and effective design for the Digital Optical Module :
 - \Rightarrow Increase in photo-cathode area
 - \Rightarrow Directional Information and 4π sr coverage
 - Complete set of precise calibration instruments
 - KM3NeT/ARCA can observe high energy neutrino flux seen by IceCube at the South Pole with :
 - \Rightarrow A different field of view
 - \Rightarrow Different systematic uncertainties
 - KM3NeT/ORCA oscillations with atmospheric neutrinos :
 - \Rightarrow NMH with a sensitivity of $>3\sigma$ in 4 years of operation

Backups

ANTARES dimensions

Radiant blue sensitivity at 404 nm	130 mA/W
Quantum efficiency (QE)	20% @ 470 nm and 28% @ 404 nm
Inhomogeneity of cathode response	10%
Supply voltage for a gain of 3×10^6	900-1300 V
Dark count at 15°C and 0.3 photo-electron threshold	1.5 kHz
Transit time spread (TTS)	4.5 ns (FWHM)
Peak to valley ratio	2.5

Table 2: Specification of the PMTs.

Figure 13: Photographs of the PMTs. ETEL D792KFL (left) and Hamamatsu R12199-02 (right).

ARCA/ANTARES angular resolution

ORCA tracks and shower identification

Phys. Lett. B, 759, 2016, 69-74

ORCA NMH sensitivity

Figure 106: The mass hierarchy sensitivity for 9 m spacing, using the default settings. This includes a fit of θ_{23} , ΔM^2 , δ_{CP} and the five systematics. The left plot shows its dependency on θ_{23} for two values δ_{CP} for three years of operation time whereas the right plot illustrates its improvement over time for two selected values of θ_{23} and $\delta_{CP} = 0^{\circ}$.

- Laser Beacon :
 - \Rightarrow Time calibration (<ns)
 - \Rightarrow Water optical properties.
- Hydrophone : position of the CB on the seafloor
- Acoustic Long Baseline emitter for DOM positioning (+ acoustic receiver on each DOM)

Instrumentation 1 ine

To monitor environmental conditions :

- Light and sound transmission affected
- Monitoring of the full water column ۲
- Measurement every 20 minutes
- Height adapted to ARCA/ORCA
- Same instruments at different depths ۲
- Current meter : Inclination of the lines
- Sound Velocimeter
- OCTD probe : Conductivity, Temperature and Depth
 - \Rightarrow Infer sound velocity through seawater equation of state

Valeport Midas Mini SVS

36 / 24