The Imaging X-ray Polarimetry Explorer (IXPE)

Carmelo Sgrò for the JXPE team carmeto.sgro@pi.infn.it INFN-Pisa

14th Pisa Meeting on Advanced Detectors, May 28, 2018

Imaging X-ray Polarimetry Explorer

- ▷ Imaging and polarimetry in the 2–8 keV band
- The observation technique and the mission were made possible by the introduction of a polarization-sensitive detector developed at INFN-Pisa
 2 order of magnitude increase of sensitivity wrt previous measurements
 - > 2 order of magnitude increase of sensitivity with previous medsurements
- $\,\vartriangleright\,$ Recently selected by NASA as the next SMall EXplorer (SMEX) mission
 - ▷ Launch in early 2021
- ▷ International partnership:

- ▷ X-ray Mirror by NASA/MSFC
- ▷ X-ray Instruments by INFN, IAPS/INFN and ASI
- Spacecraft, payload structure and integration by Ball Aerospace

- Spectroscopy, imaging and timing are routine techniques in X-ray astronomy
- ▷ Polarimetry adds two parameters to the phase space:
 - \triangleright (linear) polarization degree
 - ▷ polarization angle (phase)
- Significant X-ray linear polarization expected in most classes of non-thermal X-ray sources:
 - ▷ Emission processes
 - ▷ Synchrotron radiation and Inverse Compton
 - > Acceleration phenomena (supernova remnants, pulsar wind nebulae, jets)
 - ▷ Geometry
 - > Photon scattering in aspherical geometries (accretion disks, X-ray reflection nebulae)
 - > Photon propagation in magnetized plasmas (accreting pulsars, magnetars)
 - ▷ Fundamental physics
 - > Quantum electrodynamics (photon propagation in strong magnetic fields)
 - General relativity (photon propagation in strong gravitational fields)

Map magnetic field of bright extended source

xample: Cassiopeia A (Cas A) Supernova Remnant (SNR

- ▷ Probe sites of cosmic-ray acceleration
 - ▷ Lines and thermal continuum dominate 1-4 keV
 - ▷ Non-thermal emission dominates 4-6 keV
- ▷ 1.5 Ms simulated IXPE observation
- > See poster by Melissa Pesce-Rollins

Phase-resolved polarimetry

Example: Crab Pulsar

- ▷ Isolated pulsar in pulsar wind nebula (PWNe)
- ⊳ 34-ms period
- ▷ 140 ks of simulated observation
 - ▷ IXPE expectation (in blue)
 - ▷ visible-band profile (in gray)
- The geometry of the system determines the polarization pattern
 - \triangleright Adding 2 more panels to the phasogram

Test of Quantum Electrodynamic

Example: 1RXS J170849.0-400910

- \triangleright Magnetar is a neutron star with magnetic field up to 10¹⁵ Gauss
- \triangleright Non-linear QED predicts birefringence in magnetized vacuum
 - \triangleright Impacts polarization and position angle as functions of pulse phase
- ▷ 250 ks simulated IXPE observation to exclude QED-off

Measure Black-hole spin

Example: GRX1915+105

Microquasar in accretion-dominated state

- ▷ Scattering polarizes the thermal disk
- > Polarization rotation is greatest for emission from inner disk
 - \triangleright Inner disk is hotter, producing higher energy X-rays
- ▷ 200 ks simulated IXPE observation

Overview of the observatory

- ▷ Three identical telescopes, each including polarization-sensitive detector and grazing-incidence optics
- ho
 ight. Equatorial circular orbit at \ge 540 km altitude
- > 2-year baseline mission, 1 year extension

MMA Properties

Number of MMAs Number of shells per MMA Focal length Shell length Inner-outer shell diameter Inner-outer shell thickness Shell material

Mass per MMA Effective area per MMA

Angular resolution Field of view (detector-limited) 3 24 4000 mm 600 mm 162–272 mm 0.18–0.26 mm Nickel–Cobalt alloy 30 kg (CBE) 210 cm² (2.3 keV) >230 cm² (3–6 keV) ≤ 25 arcsec HPD 12.9 arcmin

Mirror Production Process

Mandrel fabrication

1. Machine mandrel from aluminum bar

3. Diamond turn mandrel to sub-micron figure accuracy

4. Polish mandrel to 0.3-0.4 nm RMS

5. Conduct metrology on the mandrel

Mirror-shell forming

6. Passivate mandrel surface to reduce shell adhesion

7. Electroform Ni–Co shell onto mandrel

8. Separate shell from mandrel in chilled water

Ni-Co electroformed mirror shells

The Detector Unit (DU)

The Gas Pixel Detector (GPD)

Invented by Ronaldo Bellazzini at INFN-Pisa

 Distribution of the direction of emission of a K-shell photoelectron 100% modulated for linearly polarized radiation:

$$\frac{d\sigma_c^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta\cos^2\phi}{(1+\beta\cos\theta)^4}$$

 Need to reconstruct the direction of emission of the photoelectron, i.e., a granularity significantly smaller than the typical range

- Detector concept
 - ⊳ X-ray absorption in a gas gap
 - ▷ Signal amplification via a Gas Electron Multiplier (GEM)
 - ▷ Finely pixelized ASIC as readout anode
- ho Sensitive down to very low energy ($\sim 2-8~{\rm keV}$)
- ▷ Fully two-dimensional (imaging)

The core of the detector: the ASIC

Properties

Pixels organization	$300{ imes}352$ pixels in hexagonal pattern
Pixel pitch	50 μ m
Active area	$15 \times 15 \mathrm{mm^2}$
Shaping time	3-10 µs
Pixel Noise	\sim 50 electrons ENC
Trigger	internal, with definition of a region of interest
Output	analog (external ADC required)
Technology	CMOS 0.18 μ m

The GPD assembly

- \triangleright Sealed detector
 - ▷ No gas system needed
- Gas cell thickness 1 cm
 - Gas based on DME (small lateral diffusion)
 - \triangleright Optimized in the 2-8 keV range
- ▷ A Ti frame acts as "drift" electrode
- \triangleright X-ray window in Be, 50 μ m thick
- $\triangleright\,\,$ GEM holes 50 μm pitch, 50 μm thick
- ASIC in a standard package mounted on a custom PCB
- A Ti frame for mechanical and thermal interface

Event reconstruction

- Event by event reconstruction
- Rich morphological information available
- > Iterative moment analysis to reconstruct relevant information
 - ▷ Interaction point: imaging
 - Photoelectron direction: polarimetry
 - Trigger output: timing
 - Pixel charge content: spectroscopy

Performance of the GPD as a focal-plane polarimeter

polarized source

▷ Modulation factor: 0.2 (0.7) at 2 (8) keV

 \triangleright Stability over \sim 3 years demonstrated with a sealed detector

- \triangleright Residual modulation for unpolarized radiation <0.5%
- $> \sim$ 90 μ m spatial resolution at 5.9 keV, measured (\ll track length)
 - \triangleright Good match for a ~25 arcsec-type X-ray optics with ~4 m focal length
- ▷ <20% energy resolution (FWHM) at 5.9 keV</p>
 - ▷ Enough for spectrally-resolved polarimetry (in a few energy bins) when statistics allow it
- \triangleright μ s-type time resolution
 - More than adequate for the shortest time scales of interest

- ▷ A new NASA mission dedicated to X-ray polarimetry
 - \triangleright After 40 years from the last polarimeter in orbit
- ▷ The IXPE satellite will explore the polarization of celestial sources in the 2-8 keV energy band
- \triangleright The Gas Pixel Detector will be at the focal plane of a X-ray optics
 - ▷ Will allow spatially-resolved polarimetry
- > Design of the flight detector is basically concluded
 - > Prototypes under construction and test
 - ▷ Flight production will begin soon
- ▷ Software activity on-going:
 - ▷ Event reconstruction
 - ▷ Detector simulation
 - \triangleright Science analysis tools
- ▷ On our way for launch in 2021

Spare slides

The proof of concept for the readout plane

irca 2000

- $\rhd\,$ Maximum number of channels: $\sim\,$ 1000 at \sim 200 μm pitch.
- High input capacitance to the preamplifier (high noise).
- ▷ Cross-talk between adjacent lines.

- Main technical challenge: fan-out from the readout anode to the front-end electronics.
- Vet it worked as a proof of principle.

The turning point: a dedicated readout ASIC

Bellazzini et al., NIM A 535, 477-484 (2004)

 Serial readout via external ADC.

- ▷ Produced by RIKEN and SciEnergy in Japan
- $ho
 m \,$ Hexagonal hole pattern, with 50 μm pitch, 50 μm thick

The Back-End Electronics (BEE)

- ⊳ Four PCBs:
 - ▷ Data Acquisition board (DAQ)
 - ▷ Low Voltage Power Supply, Board (LVPS)
 - ▷ High Voltage Supply Board (HVPS)
 - ▷ Back Plane (BP)
- ▷ FPGA based DAQ, with a 14-bit ADC for GPD data
- \triangleright Two custom digital interfaces for communication:
 - ▷ Command and Control Interface (CCI)
 - ▷ Science Data Interface (SDI)
- $\,\triangleright\,$ Event timing via 1-PPS (from spacecraft GPS) and a 1 MHz clock
- > Dedicated mechanical frames provide stiffness and thermal control

