Multichannel SIPM readout system for MPD Cosmic Ray Detector based on MicroTCA platform with embedded sub-ns WR synchronization G.Kasprowicz (WUT)

NARODOWE CENTRUM BADAŃ JADROWYCH ŚWIERK CHNIKA WARG WARS VIVERSITY OF T Iniwersutet

Outline

- 1. NICA collider & Cosmic Ray Detector Goals
- 2. SIPM AFE
- 3. SIPM readout chain based on Open Source HW
- 4. Conclusion

NICA - Nuclotron Ion Collider fAcility BM@N - Baryonic Matter at Nuclotron MPD - Multi-Purpose Detector NCORD - MPD Cosmic Ray Detector

1. NICA complex

Light lons Ion source and Linac LU-20 Nuclotron BM@N (Detector) MPD (Detector) Heavy Ions Ion sourse (KRION-6T) Heavy Ion Linac (HILac) Booster Nuclotron BM@N (Detector) MPD (Detector)

M.Bielewicz, 29.XI.2018 LHEP Division

seminar

1. NICA complex

- FD Forward detec
- Superconductor solenoid (SC Coil)
- inner detector (IT)
 - straw-tube tracker (ECT)
- Time-projection chamber (TPC)
- Time-of-flight
 system (TOF)
- Electromagnetic calorimeter
 (EMC - ECal)
- Zero degree calorimeter (ZDC).

nica.jinr.ru/video/general compressed.mp4

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Cosmic Ray Detector – Goals

PRIMARY PARTICLE

GROUND LEVEL

RUDUM

DROWYCH

ENTRUM

Cosmic ray air shower created by a 1TeV proton hitting the atmosphere 20 km above the Earth. The shower was simulated using the <u>AIRES</u> package.

Cosmic Ray Detector – Goals examples from other experiments

ALICE Exp. ACORDE 55 m underground thr. 16 GeV 2010-2013 y

ALEPH Exp. 140 m under. (thr. 70 GeV) (1997-99y)

Available online at www.sciencedirect.com

Astroparticle Physics

Astroparticle Physics 19 (2003) 513-523

www.elsevier.com/locate/astropar

Cosmic multi-muon events observed in the underground CERN-LEP tunnel with the ALEPH experiment

V. Avati ^{a,*}, L. Dick ^{a,1}, K. Eggert ^a, J. Ström ^{a,2}, H. Wachsmuth ^{a,3}, S. Schmeling ^b, T. Ziegler ^b, A. Brühl ^c, C. Grupen ^c

> ^a European Laboratory for Particle Physics (CERN), Geneva, Switzerland ^b Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany ^c University of Siegen, Siegen, Germany

Received 26 July 2002; received in revised form 27 October 2002; accepted 26 November 2002

NARODOWE

CENTRUM

BADAŃ JĄDROWYCH

DELPHI Exp. 100 m under. (thr. 52 GeV) (99-2000y)

Astroparticle Physics

www.elsevier.com/locate/astropa

Study of multi-muon bundles in cosmic ray showers detected with the DELPHI detector at LEP

DELPHI Collaboration

J. Abdallah ^z, P. Abreu ^w, W. Adam ^{bc}, P. Adzic ¹, T. Albrecht ^r, R. Alemany-Fernandez ⁱ, T. Allmendinger ^r, P.P. Allport ^x, U. Amaldi ^{ad}, N. Amapane ^{av}, S. Amato ^{az}, E. Anashkin ^{ak}, A. Andreazza ^{ac}, S. Andringa ^w, N. Anjos ^w, P. Antilogus ^z, W-D. Apel ^r, Y. Arnoud ^o, S. Ask ^{aa}, B. Asman ^{au}, A. Augustinus ⁱ, P. Baillon ⁱ, A. Ballestrero ^{aw}, P. Bambade ^u, B. Berkin ^{ab}, D. Berkin ^{bb}, A. Brenzel^w, ^{au}, M. Berkil^{wa, z}, M. B

Cosmic Ray Detector – Goals

- a) Trigger (for testing or calibration)

 testing before completion of MPD
 (testing of TOF, ECAL modules and TPC)
 calibration before experimental session
- a) Veto (normal mode track and time window recognition)
 Mainly for TPC and eCAL

Additionally

 c) Astrophysics (muon shower and bundles)

 unique for horizontal events
 Working in cooperation with TPC

 DECOR exp. 2002-2003y (near horizontal observation (60-90 deg. angular range) - 1-10 PeV primary particle)

Design, modeling variants

MCORD at MPD scheme

One surface on full circumference + additional surface on the top ver.1

Scintillators

Module of detectors Number of detectors: 18 Dimensions of module: 730x90x4700 Weight of module: 150kg Detectors mounted to steel frame. Steel frame built with square profiles Frame mounted to MPD by screws.

NARODOWE

CENTRUM

BADAŃ JĄDROWYCH Świerk

Scintillators readout

Legend: S (violet) – plastic scintillator, (blue) – SiPM, P (red) – power supply with temperature compensation circuit, T (brown) – temperature sensor, A (green) – amplifier, D (yellow) – MicroTCA system with ADC boards, C (orange) – Analog Front End Module.

With or without fiber?

no fibers

MTCA based modular muon trigger (signal flow only)

MicroTCA (MTCA) and OHWR

- Standard MTCA crate (14U) (cable fi1,5cm 24 channels +8) (additional cable for 5V and 70V power)
- Crate number depends on channel count and sampling speed At 250MS/s: 192 channels / crate At 125MS/s: 384 channels / crate (16 cables) At 80MS/s: 576 channels / crate At 50MS/s: 768 channels / crate

Analog Front-End module

FPGA mezzanine card (FMC)

AMC FMC carrier board

MTCA Carrier Hub

For several MTCAs one main MCH concentrates data from slave MCHs to generate final muon trigger

SiPD readout chain – Analog Front End

Analog Front End configuration

- Dedicated AFE Assembly per two SiPM
- Embedded uPC + temperature sensor + LDO for SiPM set point adjust
- CAN network connectivity with unique ID chip as CAN address
- Unique ID in every hub for VHDCI cabling checking and identification
- Hardware ID for every AFE ASSY
- Low cost LDO instead of expensive switching power supply. No inductors required and lowers EMI.
- SiPM voltage, AFE current monitoring, latchup detection & protection for AFE
- Low cost shielded VHDCI cables COTS components available as 1-10m length and custom versions
- Local passive hub with PTC fuses for 5V and 60V rails, distribution of power, CAN and signals from 16 AFE ASSY to single VHDCI cable
- Status LEDs on AFE ASSY and hub for quick fault identification
- Central power supply custom built 2U rack box with COTS resonant 5V SMPS, 60V flyback SMPS, IEC outlets and fuses.
- CAN to Ethernet converter standard COTS component.

Analog Front End configuration

- Dedicated AFE Assembly per 2 SiPM
- Low cost HDMI cables between AFE and hub
- Cable length TOF measurement for each channel
- Calibration pulse injected to the AFE entry.

Analog Front End – first results with scintillators and readout chain

- Low cost HDMI cables
- Cable length TOF measurement for each channel
- Calibration pulse injected to the AFE entry.

Data processing

Latency estimation for L1 trigger (event without parameters)

- ✓ AFE cabling 8ns/m, with 10m cabling latency is 80ns
- ✓ ADC + SERDES latency: 400ns

Latency estimation for L2 trigger (event with parameters)

- ✓ MGT latency: 500ns
- ✓ Algorithm latency : 2-5us
- ✓ Formatter and transmitter latency: 1us

Estimated total latency: 3.5 – 7.5us

Latency estimation for L3 trigger (between MTCA systems)

- ✓ MGT latency: 500ns
- ✓ Fiber latency: 500ns + 8ns/m
- ✓ Algorithm latency : 2-5us
- ✓ Formatter and transmitter latency: 1us

Estimated total latency: 10 – 15us

White Rabbit synchronization

- WR node timing module resides on top of NAT MCH
- Two WR nodes working in parallel
- Each node connected to different switch
- In case of link failure other node takes over
- Trigger inputs (outputs) available on front panel
- Dedicated WR-enabled crates available commercially from N.A.T
- ~400ps crate crate synch
- ~150ps channel-channel match.
- ~5ps jitter
- Open source design

Polish consortium NICA-PL

Thank You for Attention

ARODOW

CENTRUM

ADAŃ IĄDROWYCH