NEUTRINO-LESS DOUBLE BETA DECAY SEARCHES IN ARGON

MASAYUKI WADA

INFN Cagliari Princeton University

30/01/2018 @ ASTROCENT

THE ULTIMATE GOAL IN NEUTRINO-LESS DOUBLE BETA DECAY SEARCHES²

- To reach <m_{ββ}>=1 meV, depending on matrix element:
 - T^{$0\nu_{1/2}$} = (0.4÷2.8)×10³⁰ yr
 - (300÷2,000) tonne×yr of background-free exposure
- What are the fundamental requirements on background?
- Can a LAr-based program help deliver also this fundamental discovery?

SEARCH FOR NEUTRINO-LESS DOUBLE BETA DECAY IN DARKSIDE/ARGO³

- Dope ¹³⁶Xe in UAr, use AAr as a veto and thermalizer.
- Energy resolution slightly better than EXO-200:
 - 3.5% FWHM at $Q_{\beta\beta}$ in DS-50 before any attempts at dedicated improvement.
- Much colder temperature colder induces background advantages:
 - Limited radon emanation and enabling of radon-suppression schemes;
 - SiPMs operating with dark current below traditional PMTs levels.
- Lighter target induces greater mean free path strengthening rejection of multi-sited events.
- Possibility to use the same DarkSide-20k/Argo detector for ¹³⁶Xe for neutrino-less double beta decay searches after end of dark matter search campaign.

ENERGY RESOLUTION

- Energy resolution at Q-value of neutrino less double beta decay of ¹³⁶Xe (Q_{ββ}=2457.83 ± 0.37 keV) is important separate 0vββ from background.
- EXO-200 reached σ=1.6%*, FWHM=3.7% of energy resolution after long dedicated development.
- DS-50 reached σ=1.5%, FWHM=3.5% in absence of any fine tuning.
- Expect significant improvements
 (FWHM<2%) in future detectors from:
 - Higher light yield;
 - Greater S2 uniformity;
 - Better position corrections.

Ds-50 Measurement

The energy is not corrected for nonlinear response of PMTs

MULTI SCATTERING

- EXO-200 achieved suppression factor of 2-5* around Q_{ββ} of ¹³⁶Xe.
- Suppression factor of ~10 from single-scatter selection measured in DS-50.
- Larger suppression is expected in larger detector due to tighter fiducialization.
- Suppression even larger for key ²¹⁴Bi contaminant, expected up to **100**.

The energy is not corrected for nonlinear response of PMTs

²²²RN CONTAMINATION LEVEL

- 2447 keV gamma line from ²¹⁴Bi (²²²Rn daughter) is close to the expected 0vββ signal at 2457 keV. This is one of the most important backgrounds.
- Due to lower boiling temperature of argon than xenon, LAr is relatively easier to purify and eliminate Rn contaminations. One order of magnitude better in LAr.
- LAr
 - **0.18** µBq/kg in DEAP-3600 [PRL 121, 071801 (2018)]
 - **2.12** µBq/kg in DarkSide-50 [Phys. Rev. D 98 102006 (2018)]
- LXe
 - 6.57 μBq/kg in PandaX-II [Phys. Rev. D 93, 122009 (2016)]
 - 5-12 µBq/kg in XENON1T [Phys. Rev. Lett. 121, 111302 (2018)]
 - 66 μBq/kg in LUX [Phys. Procedia 61, 658 (2015)]
 - 3.65 μBq/kg in EXO-200 [Phys. Rev. C 92 015503 (2015)], and nEXO assumed to have 3 times more total abundance, 0.33 μBq/kg

BACKGROUND

Neutrino

TEXT

Irreducible BG. v-e scatterings from solar neutrinos. If this rate is too high, this is a disadvantage.

2νββ tail

 Irreducible BG. Need a good resolution. Could be better than nEXO (~1%), but not compared to LEGEND (~0.1%).

Cosmogenic activation of Ar and Xe

- Depends on muon flux (the depth of underground lab).
- If the decay time is short, could be vetoed.
- A possible disadvantage of LAr-Xe compared to nEXO, which has less mass to be activated.

BACKGROUND

Internal

TEXT

- Radon daughters, especially ²¹⁴Bi
 - Emanation from internal surfaces and gas circulation system.
 - Suppressed by Bi-Po tagging. (²¹⁴Po half life is 1.63 μs)
 - ²¹⁴Bi in non-active UAr volume in TPC is dangerous, but suppressed by single scatter and fiducial cuts. Depending on geometry and not included here.
- ⁴²Ar (daughter ⁴²K is β -emitter with 3.5 MeV endpoint)
 - Expected to be small in UAr. Although in DS-50 we don't observe it, it is not sensitive enough.
- External (detector components)
 - Using LAr as a veto.
 - Our advantage thanks to longer mean free path of LAr.

SETUP

- Run time: 5 years
- ¹³⁶Xe concentration: 90%
- Xe doping fraction: 3%
- Final Energy resolution: 1%, ROI is from 2.4 to 2.5 MeV (±2 σ from $Q_{\beta\beta}$)
- Total mass 377 tonne (10.2 tonne of ¹³⁶Xe)
- Location is SNOLAB (3.1x10⁻⁶ $\mu/m^2/s$) instead of LNGS (3x10⁻⁴ $\mu/m^2/s$)

NEUTRINO

- ν-e scattering
- Main contribution is from solar neutrinos.
- Coherent elastic v-N scattering is several orders smaller. Ignored
- Ar: 0.020 counts/ton/yr, Xe: 0.018 counts/ton/yr in ROI.
- In ROI, ~30 events from Ar,
 1 events from Xe with 1500
 t yr and 50 t yr, respectively.

From Matteo C. and Emmanuele P. @ INFN Cagliari

$2\nu\beta\beta$

- Due to energy resolution, the tail of $2\nu\beta\beta$ spectrum contaminates ROI.
- With 1% energy resolution, the fraction of events in ROI over total is 3.5×10⁻⁸.
- Given $T_{1/2}^{2\nu\beta\beta} = 2.165 \times 10^{21}$ years, 1.34×10-3 event / t yr in ROI.
- With 1500 t yr, it is ~2 events.

NOTE: ¹³⁶Xe 2νββ spectrum was generated with <u>https://github.com/BxCppDev/bxdecay0</u>

11

COSMOGENIC ACTIVATIONS

¹³⁷Xe in Xe

- The activation rate, 2.2×10-3 atoms/kg/yr, is taken from nEXO paper arXiv: 1710.05075 p.8.
- ▶ ¹³⁷Xe events are simulated and gives 1.38 events (7.33×10⁻⁴ event / t yr) in ROI.
- Activation in LAr at LNGS was studied by D. Franco et. al. in arXiv:1510.04196 *.
 - > Activities are scaled down by the muon flux difference between LNGS (3x10⁻⁴ $\mu/m^2/s$) and SNOLAB (3.1x10⁻⁶ $\mu/m^2/s$).
 - Only selected Isotopes: ⁶He, ²⁸Al, ³⁴P, ³⁷S, ³⁸Cl, ³⁹Cl, ⁴⁰Cl, and ⁴¹Ar based on activities, are considered.
 - The fraction in ROI is estimated by approximating each beta spectrum with flat spectrum from 0 to its endpoint.
 - Total events are 9 events (4.8×10⁻³ event / t yr) in ROI. Most dominant contribution comes from ³⁸Cl (39%).

INTERNAL BG

- Rn daughters, especially ²¹⁴Bi has a γ-line at 2448 keV, which is only 10 keV smaller than Q_{ββ}=2458 keV.
- It is dangerous, however, could be tagged by Bi-Po. This tagging efficiency is estimated by acquisition window size. Inefficiency is estimated as 1.27×10⁻⁷.
- ²²²Rn contamination level 0.18×10⁻⁶ Bq/kg from DEAP-3600 is assumed and scaled with surface areas of DEAP and Argo.
- ²¹⁴Bi decays are simulated uniformly in TPC volume and applied single scatter and fiducial cut.
- With SS + 30 cm fiducial cut, there is about 2.88 event/t yr.
- ▶ With Bi-Po tag, it becomes 3.66×10⁻⁷ event/t yr (5×10⁻⁴ events).
- Rn daughter decays in dead volume is ignored for now. Need to be studied once the geometry is determined.
- ⁴²Ar (⁴²K) contribution is ignored for now.

EXTERNAL BG

- Detector components: Acrylic vessel and SiPMs are simulated.
- Only ²¹⁴Bi from ²³⁸U chain, ²⁰⁸Tl from ²³²Th chain, and ⁶⁰Co are simulated.

Activities	²³⁸ Ulow	²³² Th	⁶⁰ Co
Acrylic [µBq/kg]	3.7	5.3	5.3
SiPMs [µBq/PDM]	171.3	139.9	21.7

Events in ROI

Fiducial cut	30 cm	40 cm	50cm
Acrylic [evt/t/yr]	5.0×10 ⁻³	3.2×10 ⁻³	1.2×10-3
SiPMs [evt/t/yr]	0.31	0.19	9.0×10-2

Total ~100 events in ROI

DOUBLE BETA DECAY IN ARGO

- At expected 2.3% FWHM, background-free condition would require background index of:
 - 10⁻⁵ events/(tonne*×year×keV)
- Limiting factors:
 - Uranium, Thorium in SiPMs-based PDMs
 - Still relevant background at current purity levels. Can be suppressed by factor 10÷100 using light guides à la DEAP-3600;
 - I propose that AstroCent play a leading role in developing ultra-clean PDMs for neutrino less double beta discovery.
- > ν -e scattering of ⁸B solar neutrinos
 - Irreducible background at 10⁻⁴ events/(tonne×year×keV)
 - Constraint can be relaxed by improving energy resolution

SUMMARY

TEXT

- The largest BG contribution is from SiPM. One order higher than the other contributions. Ultra-pure SiPM based module and ways to reduce its contribution are necessary.
- Solar neutrino is the second largest contribution. LAr fraction need to be reduced.
- Currently, the sensitivity is the same order of magnitude as nEXO.

Components \ Fiducial cut	30 cm	40 cm	50cm
Acrylic	5.0E-03	3.2E-03	1.2E-03
SiPMs	0.31	0.19	0.09
2νββ	1.3E-03	1.3E-03	1.3E-03
²²² Rn w/ Bi-Po tag	3.7E-07	3.6E-07	3.6E-07
Cosmogenic (¹³⁷ Xe)	7.4E-04	7.4E-04	7.4E-04
Cosmogenic in LAr	4.8E-03	4.8E-03	4.8E-03
neutrino	0.02	0.02	0.02
Total [evt/t/yr]	0.34	0.22	0.119

NOTE: The volume is LAr volume

EFFECT OF DIFFERENT XE FRACTION

50%-50%

3% Xe

Higher Xe fraction weaken SS cut efficiency.

Self-shielding is not strong enough to recover the efficiency loss.

18