Impact of SiPM response on DarkSide physics

Davide Franco

Laboratoire AstroParticule et Cosmologie (Paris)

DarkSide SiPM

- Strict collaboration with
 Fondazione Bruno Kessler (FBK):
 development of specific SiPM for
 LAr (50 PDM under way)
- The FBK technology on transfer to LFoundry for mass production (starting April 2019)
- ☑ Packaging of 240,000 SiPMs at NOA, a facility funded at LNGS

	DS-20k requirement	SiPM tile (PDM)	
Surface	5x5cm ²	24cm ² prototype 25cm ² final PDM	1
Power dissipation	<250mW	~170mW	1
PDE	>40%	$50\% \cdot \epsilon_{geom} = 45\%$	1
Noise Rate	<0.lcps/mm ²	0.004cps/mm^2	1
Time Resolution	O(10ns)	16ns	1
Dynamic Range	>50	~100	1

ReD

PMT vs SiPM

20 µs

SiPM time response

PSD can not be applied directly on waveforms as done with PMTs.

Starting time of each SiPM tile signal must be first extracted in order to build the pulse shape.

SiPM energy response

After Pulses and Cross Talks

1 PE at t0 can induce:

- Direct Cross Talks (DiCT): at t0 with mean number = mu
- {0,1} After Pulse (AP) at t1 + t0

DiCT and AP can induce in turn DiCT and AP

Since AP are delayed, we can study the statistics of all hits at t0 only, and then repeating the procedure for all hits at t1 + t0, and so on.

We can treat hits at different times as independent events

After Pulses and Cross Talks

If the mean number of CTs for each PE is mu, we expect an **effective mean value** due to the CTs induced by CTs themselves as **mu_eff = mu / (1 - mu)**

Up to now, we have treated the statistics of CTs as **Poisson(mu/(1 - mu))**, but this is wrong.

We have tested it with a toy MC

Laser Runs

Procedure

- (1) Fit of laser spectra
- (2) Integral of each peak
- (3) Fill pe spectra

Since we trigger on laser, no possibility to induce AP/CT when no laser photon is detected

npe = 0 is a direct measurement of laser occupancy:

=> f = # 0 hits / # all hits = Exp(-mu) => **mu = log(1/f)**

Laser Runs

Data MC

10

10³

10²

10

pe

ululululululu

0.2

0.18

9

0.3 Laser Poisson statistics is fixed by bin in 0 pe 0.25 The difference between data and 0.2 without AP/CT simulation is due to AP and CT 0.15 Fit of CT mean number and AP probability 0.1 with toy MC (scan + minimization) 0.05 1 2 З 0.35 0.24 probability Data 0.22 0.3 MC 0. AP 0.18 0.25 0.16 0.2 0.14 with AP/CT 0.12 0.15 0.1 0.08 0.1 0.06 0.05 0.04 0.02 0 10 2 8 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 CT mean number [pe] pe

0.35

Laser Runs

²⁴¹Am Source Runs

Resolutions suffer from geometrical effects

We need field-on runs for different Vbias

²⁴¹Am Source Runs

Matching the energy scale

Matching the resolution

xy response

²⁴¹Am at different phi angles

²⁴¹Am Source Runs

Sum of all channels corrected for TBA

Full Simulation: g4ds

ph_x:ph_y {ph_volume==-1}

Full Simulation: electronics

Sum of all channels

In the low energy, looking at tile by tile **first hit** response

At high energies, need to develop hit identification in the single tile

Roadmap

✓ Understanding SiPM with ReD

- ✓ AP CT- Saturation Timing
- \checkmark Calibration strategy definition

$\checkmark\,$ SiPM effects in **electronics simulation**

✓ Reconstruction

- ✓ How calibrating the energy response?
- \checkmark How identifying not working SiPM in a tile?

✓ Test on proto-0