

Power supplies in DTT

ILO Industrial Opportunities Days

Osservatorio Astronomico di Capodimonte, Naples, Italy 7 June 2019

Alessandro Lampasi / ENEA

Topics of the presentation: PSS Procurements

Power supply System (PSS) = everything electrical in the DTT project

Excluding (partially):

- The standard low voltage distribution inside the buildings

 Included in the BUI/site procurements
- The Additional Heating (ECRH, ICRH, NBI) PSs - I am partially in charge
- PSs for control of ELMs, RWMs
 - Not yet totally defined

Description follows flow of power

ILO Industrial Opportunities Days Naples, 7 June 2019

HV line (approximate) path

PS layout in ENEA Center

 $\textit{cos}\phi$ correction, harmonics and flicker filters

ILO Industrial Opportunities Days Naples, 7 June 2019

Single Line Diagram

ILO Industrial Opportunities Days Naples, 7 June 2019

Options for power factor correction (+harmonics, flicker...)

- 1. STATCOM (SVC)
- 2. Rotating synchronous compensator (condenser)

Summary of the 19 coil PSs

Operation: ≈100 s Period: every 3600 s

Superconducting coils:

• 12 CS/PF

Copper coils:

- 2 VS (equatorial)
- 4 IV (under divertor)
- ELM, RWM

Continuative (days): • 1 TF

TFC PS: 45 kA, 100 V

Summary of the 19 coil PSs

Max I, V ratings (old DN, SF)

SF had a lot of power in the middle of the scenario

Breakdown with dynamic compensation

Functional scheme of a SNU (with external FDU)

ILO Industrial Opportunities Days Naples, 7 June 2019

Official scenario for Terna

6 CS + 6 PF PS topology

Basic principles:

- Low impact on the external grid
- Low power input: 20 kV, <100 kW (energy recovery)
- Dynamic compensation during breakdown
- Modularity

ILO Industrial Opportunities Days Naples, 7 June 2019

Working prototype

SCPS: 2 kA, 10 s

Dimensions: 120 x 60 x 190 cm = **1.4 m³**

Wheels to move it!

Connections: just the plug and the load

Previous system: 2 kA, 1 s

Total dimensions: > 10 m³ (> 7 times) + dedicated 20-kV line and 324-V line

Fixed installation with many connections

16

ILO Industrial Opportunities Days Naples, 7 June 2019

Rough estimation of possible final configuration

- Total Energy Storage for 12 PSs: 600 MW, 3600 MJ, 960 kWh
- Moreover, ENEA has SMESs and flywheels
- Comparison:
 - Korea: 25 MW supercap in several facilities
 - Endesa STORE, Canary Islands, Spain supercap: 4 MW, 20 MJ
 - Terna, Sicilia + Sardegna supercap: 1+1 MW, 1+1 MJ
 - Terna has some battery systems in order of 10 MW
 - DTT could be an "electrostatic lake" (Italy has 4 hydro-storage lakes at 1 GW)

If you like to know more: www.supercap.org

Main characteristics of the base PSs

Characteristic	CS/PF PSs	VS coil PSs	IV coil PSs	ELM/RWM PSs					
Position	Ex-vessel	In-vessel equatorial	Around divertor	Non-axisymmetric					
Load coil material	Superconducting	Copper	Copper	Copper					
Number of PSs	12	2	4	To be defined					
Number of quadrants	4	4	4 (2 possible)	4					
Duty cycle and typical scenarios	<200s/3600s	100s/3600s	Flat-top ≤40 s	100s/3600s					
Ramps	Up 60 s, down 30 s	None	To be defined	None					
Number of converter transformers	1 (also for more coils)	1	2	To be defined					
Adapted topology	DC link storage	DC link storage	Thyristor bridge	DC link					
Adopted topology	H-bridge	H-bridge	Thynsiol blidge	Same input pow					
Semiconductor technology	IGBT (IGCT)	IGBT	Thyristor	Silicon carbide					
Energy stored in DC link per PS	>300 MJ	>100 MJ	None	To be defined					
Charger	Diode or AFE	Diode or AFE	None	Diode/thyristor					
Input power	<50 kW	<100 kW	>1 MW	<1 MW					
Number of basic units	12	10	5	To be defined					
Current	±30 kA	±25 kA	±25 kA	To be defined					
No-load DC voltage	1000 V	200 V	200 V	To be defined					
Worst-case DC voltage	600 V	200 V	200 V	To be defined					
Control	Fast	Fast modulation	Slow	Fast					
Controlled quantity	Current or voltage	Current or voltage	Current	Current					
Supporting SNU	Static	None	None	None					
Cooling	Raw water	Raw water	Demi water	Air					

Layout of the coil PS area

DC busbars and tunnels

Assumed scenario and performances for additional heating

Poor knowledge of AH scenarios (and real efficiency), including fast variations

H&CD system	Initial mix	Maximum	Wall-plug	Power factor coso
		expected upgrade	efficiency η	
ECRH	15 MW	30 MW	35-40%	0.9
ICRH	3 MW	9 MW	40%	0.9
N-NBI	7.5 MW	15 MW	40-45%	0.87

Typical DTT scenario (and official scenario for Terna)

Summary of PSS Calls for Tenders

		2019		2020			2021				2022				2023				2024				2025						
		Т	П	ш	IV	I	П	ш	IV	I	П	ш	IV	I	П	ш	IV	I	П	ш	IV	I	П	ш	IV	Ι	П		IV
1	High-voltage line																												
2	Electrical substation																												
3	Power factor corrrection and filters																												
4	Electrical distribution (SSEN & PPEN)																												
5	Toroidal Field Coil PS																												
6	Toroidal Field Coil fast discharge units																												
7	CS/PF PSs and SNUs (some BPSs)																												
8	Internal Coil PSs																												
9	DC busbars (CS, PF, TF, IC)																												
10 Others (dummy loads, auxiliary, transducers,)																													

Color code: Preliminary analysis Prepare and launch the Call for Tender Call for Tender Design Manufactoring and factory tests Installation (and procedures for the HV line) Test Commisioning

Remember, not including:

- H&CD PSs
- ELM, RWM PSs
- LV in buildings

Short-term planning: test facility for PF, CS, TF coils

- CS and PF PSs are very different from TF PS
- Different PSs also in test facility
- Both ready by 2021 (2022)
- Proposal
 - 1. A 40" container for PF6 and CS0, including SNU but with shorter scenario (less energy)
 - 2. A 40" container for 18 TF coils, including FDU but with reduced resistance for same τ = 5 s

Thank you for your attention

