

Sviluppo degli iniettori di neutri per esperimenti di fusione:

Alimentazioni elettriche e linee di trasmissione in alta tensione e corrente continua

V. Toigo

Negative ion beams in ITER

- 2 (+1) HNB: Heating Neutral Beam
- 1 DNB: Diagnostic Neutral Beam
- NBTF: Neutral Beam Test Facility

Aims of ITER Neutral Beam Test Facility

- Accompanying facility in preparation and support of ITER operation:
 - To achieve nominal parameters of source and beam
 - To optimize HNB operation
 - To improve reliability and availability of injectors
 - To realise and commission systems: e.g. HV components @1MV, cryopumps, ...
 - To finalise HNB design
 - To solve HNB issues during ITER operation
- NBTF hosts two experiments:
 - **SPIDER** Optimisation of ion source: current density, uniformity, stability
 - **MITICA** Full-size prototype of ITER NBI: high voltage holding, beam optics

ITER Neutral Beam Test Facility

NBTF hosts the two experiments: the negative ion source **SPIDER** and the 1:1 prototype of the ITER injector **MITICA** Each experiment is inside a concrete biological shield against radiation and neutrons produced by the injectors Thanks to these shielding the assembly/maintenance area will be fully accessible also during experiments

SPIDER: full scale prototype of HNB/DNB source

Optimisation of production of negative ions in terms of:

- > Density
- > Uniformity
- > Stability
- Co-extracted electrons

	Unit	Н	D
Beam energy	keV	100	100
Maximum Beam Source pressure	Pa	< 0.3	< 0.3
Uniformity	%	±10	±10
Extracted current density	A/m ²	>355	>285
Beam on time	S	3600	3600
Co-extracted electron fraction (e ⁻ /H ⁻) and (e ⁻ /D ⁻)		<0.5	<1

The SPIDER Beam Source

- BP = Bias Plate
- PG = Plasma Grid
- EG = Extraction Grid
- GG = Grounded Grid
- ED = Electron Dump

Beam Source Main Characteristics:

- Size: 2x2x5 [m] (overall)
- 8 RF drivers
 - 3 Grids: PG, EG, GG
- 1280 beamlets
- Electron dump
- Electrostatic screen

SPIDER BS at the factory before transport to NBTF site

SPIDER BS as installed inside the Vacuum Vessel

SPIDER Components

Vacuum-insulated beam source

SPIDER Power Supply

Conceptual scheme of the SPIDER PS system

Acceleration Grids breakdowns

- The acceleration grids operate close to breakdown and, during normal operation of the injector, breakdowns can occur frequently and unpredictably, even every few seconds
- > Grid Breakdowns (BD) have to be considered as a normal operational condition
- To avoid damage to the acceleration grids due to breakdowns it is very important to limit the energy discharge in the arc. This is achieved by acting on various aspects:
 - \circ $\;$ Switching-off the power supply as fast as possible $\;$
 - Limiting the electrostatic energy stored in the HV components
 - Introducing passive protection systems to limit the current and the energy dissipated in the arc

Grid breakdowns: power supplies

- > From the point of view of the power supply it is equivalent to a short circuit on the load
- BD detector have to discriminate BD from fault:
 - In case of fault the protection system intervenes by switching off the power supply as soon as possible. Furthermore, the system cannot restart until it has been reset
 - In case of BD the power supply are switched off in tens on microseconds, kept off for about 20ms and then restarted following a pre-programmed sequence

Operating sequence of the power supply system during and after a breakdown

Parameter	Value
Maximum detection time ¹	50 μs
Maximum inverter switch-off time ²	100 μs
Maximum charge measured upstream TL1 ^{3, 4} with AGPS conversion system off	200 mC
Time for the line current (measured upstream TL1) decay under 100 A with AGPS conversion system off	300 μs
Maximum charge measured upstream TL1 ^{3, 5} with AGPS conversion system in operation	250 mC
Maximum energy dissipated inside the ion source arc ⁶	50 J
Time to be ready for restart after a BD	20 ms
Maximum number of BD for a single pulse	200 total (for t = 3600s) 50 consecutive

AGPS parameters to be satisfied in case of grid breakdown

Grid breakdowns: passive protections

- Electrostatic energy depends on the square of the accelerator voltage
 - if possible, to adopt PS topologies that do not require output filters \rightarrow PSM
 - If necessary, they must be kept to a minimum and equipped with a series resistor to dissipate as much as possible the energy in case of a BD
 - keep the parasitic capacities of high voltage components as low as possible
- > To insert dissipative and damping elements in series with the conductors
 - Insertion of high permeability magnets around the conductors to increase the series inductance: core snubbers
 - o Insertion of resistors in series with conductors feeding low currents

SPIDER Power Supply

3D CAD view of SPIDER Power Supply, TL and Vessel

SPIDER HV Deck & Transmission Line

- Simple and cost-effective design based on air insulated unsealed solution
- **Internal conductor:** cylindrical shape (0.5m diameter) containing all the ISEPS • connections (RF lines, busbars, power and signal cables, optic fibers, etc.)
- **Outer conductor:** square section $(1.2 \times 1.2 \text{ m}^2)$, grounded ۰
- Installation and SAT concluded in 2016
- **Insulation:** 130kV between internal and external conductors •

SPIDER TL installed outside the Bio-shield

SPIDER HV Deck

HV Deck is a Faraday cage, air insulated to ground at -100kV, hosting Ion Source Power Supply

- External size: 13m x 11m x 5m
- Insulating distance from ground and walls of 1m (post-insulators installed in a pit to have access at ground level)
- Access to internal side via two drawbridges
- Cooling pipes and Optic fibers made by plastic material
- Installation and SAT concluded in 2015

SPIDER Ion Source Power Supply

ISEPS is an heterogeneous set of power supplies including:

- RF Generators: 4 x 200kW, 1MHz (self-oscillator based on tetrodes)
- High Voltage generators: 2 x 12.8kV, 140A dc (pulse step modulator technology)
- High current generator: 30V, 5kA (resonant technology)
- Insulating transformer: 22kV/6.6kV, 100kV_{dc} to ground, 5MVA
- Auxiliaries, including MV, LV Distribution Boards, step-down transformers, etc.

Installation and commissioning concluded in 2016

ISEPS factory acceptance tests

CONSORZIO RF

HUMINIELWERK Induction. Heating. Solutions.

ISEPS inside HVD: on the right side, view of the Extraction Grid PS (12.8 kV 140A)

SPIDER Acceleration Grid PS

The SPIDER 100kV Power Supply feeds the acceleration grids

- It is provided by INDIA Domestic Agency
- Main requirements:

Nominal voltage	96kV
Nominal current	71A
Topology	one quadrant, pulse step modulator
Switch off time	10 micro seconds
Switch off time	To mero seconds

SPIDER AGPS: Dummy load (left side) and insulating frames supporting Pulse Step Modulator modules (right side)

100kV Multi-winding transformers

SPIDER Acceleration Grid PS

Industrial Opportunities Days, Napoli 6-7 June 2019

MITICA full scale prototype of ITER HNB

Optimisation of neutral beam in terms of:

- Performances
- Reliability
- > Availability

	Unit	Н	D
Beam energy	keV	870	1000
Acceleration current	А	46	40
Max Beam Source pressure	Pa	0.3	0.3
Beamlet divergence	mrad	≤7	≤7
Beam on time	S	3600	3600
Co-extracted electron fraction (e^{-}/H^{-}) and (e^{-}/D^{-})		<0.5	<1

The MITICA Power Supplies

MITICA Power Supply: AGPS

CONSORZIO RFX Ricerca Formazione Innovazione

Parameter	D-, 1Me	eV, 40A	H ⁻ , 870keV, 46A				
	Voltage	Current	Voltage	Current			
	[kV]	[A]	[kV]	[A]			
Main Supply	-1000	59.4	-870	62.8			
Grid 1	-800	3.0	-696	2.4			
Grid 2	-600	5.3	-522	4.3			
Grid 3	-400	3.1	-348	3.1			
Grid 4	-200	2.7	-174	2.1			
Grounded conductor	0	45.3	0	50.9			

AGPS main output ratings

AGPS stage based on Neutral Point Clamp Technology

AGPS Conversion System

Rectifier main ratings						
Parameter	Value					
Output voltage	1625V dc					
Output current	9kA dc					
# of thyristors per valve	4					
# of units	4 in series					

Installation and commissioning concluded in 2018

Inverter unit main ratings							
Parameter	Value						
Output voltage	5500V rms						
Output current	850A						
Waveform	NPC square wave at 150Hz						
# of units	2 in parallel per stage (10 in total)						

MITICA HVD1 & Bushing

SIEMENS

HVD1 is the 1MV Faraday cage, air insulated, hosting the Ion Source PS

- Cage size: 12m x 8m x 10m
- Post insulator length: 6.5 m
- Installation completed in 2017 including partial acceptance tests
- SAT (1.2MV dc for 1 hour) in progress

Factory acceptance tests on HVD1 1:5 mock up

HVD1 during installation

AGPS-DCG & Transmission Line

Support for the Transmission Line 2

Inside Transmission Line 1

- Now about 95% installed
- Insulating tests started in 2018

AGPS-DCG

Transmission Line 1 & 2

SF6 Gas Handling & Storage Plant

AGPS-DCG insulating tests: 1.2MV (1h),1.06MV (5h)

1st STEP 1200kV-1 HOUR

2nd STEP 1060kV-5 HOURS

First HV insulating tests successfully passed

Industrial Opportunities Days, Napoli 6-7 June 2019

HV Bushing and bellows

Ceramic and FRP rings

Bellows

Completion of assembly

- HV Bushing interfaces TL, SF6 gas insulated, and Vessel
- It is the most critical HV components: very challenging requirements
- Deep R&D was performed in order to define manufacturing procedure
- Stored in the Site ready to be installed

Industrial Opportunities Days, Napoli 6-7 June 2019

Overall schedule of the NB systems for ITER

Activities	2018	2019	2020	2021	2022	2023	2024 01020304	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
ITER MILESTONES																		
ELISE								FI	P		PFPC)-1			PFPO-2			D
SPIDER																		
SPIDER Integrated Commissioning																		
Operation in Hydrogen																		
Mid-Term Maintenance											IT	EB or	orati	on w	vith HN	lRe		
Ion source operation to provide info to M	ration															ч Ц З -		
Extended Experimental Program at SPIDE																		
operational program																		
MITICA																		
MITICA PS Testing																		
1MV PS Integrated Tests																		
Demonstration of 1MV holding with the HVB and BSV		-																
Tests with gas, tests with screen at 600kV, test with intermediate screen	S																	
MITICA Beam Source - Procurement and Manufacturing																		
MITICA Beam Source - Installation and Test					C.													
MITICA Integrated Commissioning																		
Source and HV Conditioning																		
Beam Extraction and Acceleration in H2/D2 Low Power Shhort Pulse																		
Long pulse operation in H/D			МІТ		nerat	tion												
Extended Experimental Program at MITICA																		
HNBs																		
HNB FEC & Vessel - Procurement and Manufacturing																		
HNB PS - Procurement and Manufacturing																		
HNB Beam Source - Procurement and Manufacturing										•								
Install HNBs Power Supplies																		
NB Cpts I Installation (Vessel, DD, VVPSS Box, HV Bushing)																		
1MV Tests														HNRca	und DNB to operat	e at ITER		
NB Cpts II Installation (ES, AV, FS, BLCs, Sources)																		
Integrated Commissioning HNB																		
Operation into the PFPO-2													V		· · · · · · · · · · · · · · · · · · ·			

Contributors to NBTF Project

Thanks for your attention