SIPM WORKSHOP FROM FUNDAMENTAL RESEARCH TO INDUSTRIAL APPLICATIONS

CRYOGENIC SIPM-BASED PHOTO-DETECTORS FOR DARKSIDE

Bari 4/10/2019

Alessandro Razeto -- Laboratori Nazionali del Gran Sasso

Dark BIDE Dark Matter

- 2
- □ Many evidences hint that ordinary matter accounts only for 15% of the total matter in the universe
 - The rotation curve of galaxies
 - Weak lenses
 - Cosmic microwave backgroung
- Dark matter is invisible to our telescopes
 - D The primary candidate for dark matter is some new kind of elementary particle not yet discovered

DARKEUDE DM Detection techniques

- 3
- Dark matter can be probed with
 - Accelerators looking for missing energy in high energy interactions
 - Indirect searches looking for product of decay of DM particles
 - Direct detection experiments looking for interactions of DM particles in large instrumented detectors

DARKEUDE Direct detection challenges

- Assuming that the DM is constituted by weekly interacting particles (WIMPs)
 - **D** The interaction rate with a 100 ton experiment is below few per year
 - While the natural radioactivity produce a background larger than 10¹⁵ interactions per year
- The challenge of dark matter detectors is to reduce the background to 0.1 counts/year
 - **D** By installing the detectors in underground laboratories
 - **By using selected low radioactivity materials to build the detector themselves**
 - By designing experiments capable of tagging the background with <u>high efficiency</u>

Double phase TPCs

- In a dual phase time projection chamber a nobile gas is liquified (Ar, Ne, Xe)
 - The interaction of a particle emits a primary light pulse (S1) \sim 100-1000 fotons in few µs
 - In the interactions electrons are generated as well
- The electrons are drifted toward a gas pocket on the top of the detector
 - Where they produce a second light pulse (S2)
 - = \sim 1000-10000 photons in 20 μ s
- The light is detected by a set of photo-detectors
- This configuration allows to reconstruct the position of the interaction
 - With a further suppression of external background

Pulse Shape Discrimination

- **For argon the light temporal profile of the S1 light strongly depends on the incoming particle**
 - For nuclear recoils 70% of the light is emitted in the first 100 ns
 - For e^{-}/γ interaction only 30% is emitted in the first 100 ns
- It is then possible to develop an algorithm for discriminating nuclear recoils from electromagnetic interation
 - This technique has proven capable of a discrimination power of ~ 1 part over 10^9
- This is important because most natural background is e^{-}/γ
 - And we are looking for WIMPs-induced nuclear recoil
 - Thanks to the pulse shape discrimination (PSD) Ar-based detectors can reject most of the natural backgroung
- Optimal light detection is of primary importance for LAr detector

DARKSIDE-20K

DarkSide program

- The DarkSide collaboration aims to discover dark matter with a series of stepped size LAr-based detector
 - From 10 kg to 300 ton
- The collaboration includes about 300 scientist from Europe, Russia, USA, Canada, China, Brazil
 - And unites all the effort for argon-based dark matter experiments
- The DarkSide collaboration has a strong R&D program to improve the detector technologies
 - Light detection based on SiPM in collaboration with FBK
 - Extraction of underground argon to get rid of ³⁹Ar
 - Naturally present isotope in atmospheric argon with a 1 Bq/kg activity

DarkSide-20k

- DarkSide-20k is a dual phase TPC filled with about 50 ton of LAr
- The detector is installed in a cryogenic vessel designed for Proto-Dune
 - Containing about 700 ton of LAr
- The photo-detectors are SiPM-based
 - With a total instrumented surface of $\sim 28 \text{ m}^2$
- On the other hand ³⁹Ar is a naturally recurring isotope in atmospheric argon
 - To suppress the background

DarkSide-20k facts

+ VETO ~ 3000

DS-20k TPC Dimensions	
TPC Drift Length	$350\mathrm{cm}$
Octagonal Inscribed Circle Diameter	$355\mathrm{cm}$
Total LAr Mass	51.1 t
Active LAr Mass	49.7 t
Fiducial Cut Distance (vertical)	$70\mathrm{cm}$
Fiducial Cut Distance (radial)	$30\mathrm{cm}$
Fiducial LAr Mass	$20.2 \mathrm{t}$
Nominal TPC Fields and Setting	s
Drift Field	$200 \mathrm{V/cm}$
Extraction Field	2.8 kV/cm
Luminescence Field	$4.2 \mathrm{kV/cm}$
Cathode Voltage	-73.8 kV
Extraction Grid Voltage	$-3.8 \mathrm{kV}$
Anode Voltage	ground
Gas Pocket Thickness	$7\mathrm{mm}$
Grid Wire Spacing	3 mm
Grid Optical Transparency	97 %
SiPM PDM	· · ·
Number of PDM on TPC Top	4140
Number of PDM on TPC Bottom	4140
PDM Effective Area	$50 \times 50 \mathrm{mm^2}$

Parameter	Value
ProtoDUNE Cryostat parameters for AAr	
ProtoDUNE Cryostat inner width	$8548\mathrm{mm}$
ProtoDUNE Cryostat inner height	$7900 \mathrm{mm}$
LAr height in ProtoDUNE Cryostat	$7500\mathrm{mm}$
Total AAr in ProtoDUNE Cryostat	700 t
ProtoDUNE Cryostat insulation per unit area	$6.5 \mathrm{W/m^2}$
Thermal Heat Load of ProtoDUNE Cryostat	2.7 kW
TPC PDM Cold Electronics Power	$1.5\mathrm{kW}$
Veto PDM Cold Electronics Power	$0.5 \mathrm{kW}$
AAr System Design Mass Circulation Speed	$10000\mathrm{std}\mathrm{L/min}$
Minimum heat recovery efficiency of AAr heat exchanger	>95 %
AAr Turn Over Time	30 d
Total Cooling Power Required	$10 \mathrm{kW}$
LAr boiling threshold at 3 m depth	$60 \mathrm{mW/cm^2}$
Minimum AAr condenser cooling power to hold LAr inventory	2.7 kW
ProtoDUNE AAr top pressure	$1.075 \mathrm{bar}$

Photo Detector Module

- □ The Photo Detector Module (PDM) is the light sensitive unit of DarkSide-20k
 - 24x SiPM 12x8 mm² mounted on a tile
 - A front-end cryogenic pre-amplifier with differential output
- PDMs are sensitive to the single photons
 - Up to a total of few thousands photons
- Each PDM is connected to a 120 MS/s digitizer
 - the acquired waveform is digitally processed
 - To extract only the photon arrival time & charge
- Offline the collected times & charges are summed
 - To reconstruct the original shape of light emission
 - Extracting the physical data of the interaction

total energy, asymmetry, pulse shape, event position, ...

PDM specifications

- The specifications for the PDMs of DS20k require
 - **5**x5 cm² surface
 - □ PDE @ 420 nm > 40%
 - **DCR** < 0.08 cps/mm^2
 - **D** Baseline hit rate \leq DCR \leftrightarrow SNR > 8
 - Timing resolution ~ 10 ns
- These parameters directly impact the PSD
 - In the integration window of 6 µs
 - **20.7** $m^2 \circ 6 \ \mu s \circ DCR = 10 \ pe$
 - Larger random hits could spoil the PSD at low energy

Baseline hit happens when the baseline noise (gaussian) goes above threshold emulating a real photo-electron.

Can be reduced with low noise front-end

Motherboards

- PDMs are mounted on motherboards
 - 25 PDM per motherboard
- Each motherboard has
 - A power distribution hub capable of disabling individually each PDM
 - Called steering module
 - A differential to optical linear transmitter
 - Signals are extracted over high purity optical fibers
 - \blacksquare No faraday cage penetration, no ground loop \rightarrow less noise
- The PDMs are installed on a high purity copper frame

Motherboards

- PDMs are mounted
 - 25 PDM per moth
- Each motherboard ł
 - A power distribution
 PDM
 - Called steering
 - A differential to o
 - Signals are ext
 - No farad
- The PDMs are instal

CRYOGENIC SIPMS

DARKSIDE Collaboration with FBK

16

Collaboration with FBK started in 2014

 A shared R&D path started to improve the performances of SiPMs at cryogenic temperature

DARKBIDE NUV-HD VS NUV-HD-LF

DARKBIDE NUV-HD VS NUV-HD-LF

18

After-pulse probability

DARKSIDE NUV-HD VS NUV-HD-LF

19

Direct Cross-Talk probability

DARKSIDE NUV-HD VS NUV-HD-LF

DARKSIDE NUV-HD-Cryo

- The main limitation of NUV-HD-LF is the narrow overvoltage for stable operation at 80 K with short recharge time (small R_q)
 - 5 VoV with recharge time \sim 300 ns
- NUV-HD-Cryo were developed to overcome this limitation
 - Up to 14 VoV

DARKEIDE NUV-HD-Cryo

DARKBIDE NUV-HD-Cryo

DARKBIDE NUV-HD-Cryo

140

160

180

DARKSIDE NUV-HD-Cryo

The Afterpulse is always lower than few %

DARKBIDE LFoundry

- □ For DarkSide-20k around 28 m² of SiPMs are required
 - The collaboration opted to produce them in an industrial grade foundry
 - LFoundry won the INFN tender for silicon production
- **FBK** started transfering the NUV-HD-Cryo technology to LFoundry in 2018
 - A first test run was produced and verified in FBK
 - 1x1 mm² with several variants to qualify the processes
 - The results are very positive
 - Smaller issues were found with the backside metallization
- \Box 3 runs 8x12 mm² are going to be delivered within mid October
 - 25 8" wafers each corresponding to ~ 250 * 75 SiPMs
 - These SiPMs will be used to instrument a 1 ton prototype
- □ LFoundry & DarkSide are collaborating to have deep TSV for the forth test run

DARKBIDE LFOUNDRY NUV-HD-Cryo

27

Direct FBK vs LFoundry production

CRYOGENIC FRONT-END

DARK DUDE Cryogenic front-end board

- 30
- A PDM includes 24 SiPMs 12x8 mm²
- An analog aggregated output is desired
 - Equivalent to a 2"-3" PMT
- A cryogenic front-end board is required
 - **c** Capable of managing the $\sim 24 \times 5$ nF capacitance of the SiPMs
 - To locally amplify the signal to few mV/pe scale
 - With good SNR (>8), bandwidth (>30 MHz) & dynamic range (>50 pe) to fulfill the PDM requirements
 - A trans-impedance amplifier topology is needed
 - With low power dissipation to avoid bubbling
 - Using low radioactivity components

Heterojunction electronics

- Standard BJT detectors are not working < 150 K
- FET are working down to 10-40 K
- FET technology typically: $e_n \sim 4 \text{ nV}/\sqrt{\text{Hz}} \& i_n \sim 10 \text{ fA}/\sqrt{\text{Hz}}$
- For fast TIA amplifiers e_n is more important than i_n
- FET technology may not be the best choice
- Most producers are distributing heterojunction BJT based amplifiers
 - For high bandwidth applications (GHz) or for very low noise applications (sub-nV/ \sqrt{Hz})
- HBTs are great signal amplifiers at cryogenic temperature
 - They are BJT -> very low en
 - Low 1/f noise
 - Noise and bandwidth improve at cryogenic temperature

DARKSIDE LMH6629 characterization

32

LMH6629 from TI:

- Works down to 40 K
- $\Box \quad \text{Stable for } |Av| > 10$
- Very high bandwidth
 - 4 GHz
 - Up to 15 GHz @ 77K
- Very low noise
 - □ 0.6 nV/√Hz
 - 0.3 nV/√Hz
- Max bias 5 V
 - 60 mW @ 77 K
- $P_{out}(1 dB) = 16 dBm$ 3.8 Vpp

DARKSIDE LMH6629 Noise Model

- 33

$$N_o = \frac{G}{2}\sqrt{4k_B T R_{eq}^J + e_n^2(T) + i_n^2(T) R_i^2}$$

Where:

- R_{eq} accounts for all resistors
- □ e_n is modeled as a Johnson source
- \Box i_n is the Shotky noise of $|i_b| + |i_o|$
- \square N_o is the output noise density @ 1MHz
- The fit reproduces the data at better than 2.5 %

<u>The voltage noise density of the LMH6629 is equivalent to a 20 Ω resistor</u>

M D'Incecco et al., IEEE TNS 65,4,18

DARKEIDE TIA design & results on SiPM

- □ Standard trans-impedance design
 - Based on operational amplifier
- Few tweaks for stabilization
 - R₊, R₋, C_i
- \Box C_f is due to parasitic effects (~0.2 pF)
- □ The series resistor R_s reduce the noise gain

DOI 10.1109/TNS.2018.2799325

DARKEIDE TIA design & results on SiPM

From 1 cm² to 6 cm²

TIA bandwidth ~ 30 MHz @ 77 K \rightarrow 9 nF input capacitance & R_s/3 (+Rd) 30 MHz = 7 ns rise time

- To read 6 cm² with the same amplifier a hybrid ganging solution is used
 - Virtual ground summing does not change the shape of the signal
- This design increases the capacitance seen by the TIA only by 50%
 - Respect to a single 1 cm² SiPM
- For cryogenic use a precision voltage divider is required
 - Otherwise the voltage division will be defined by the leakage current

DARKBIDE From 6 cm² to 24 cm²

- 4 independent TIA pre-amplifiers
 - each connected to 6 SiPM
- □ An active adder sums the 4 signals
 - A single-ended to differential
 - Total gain 26 kV/A
- Plus a voltage regulator & a uC for ID
- □ Total power ~ 250 mW
- PCB based on Pyralux
 - Custom stackup for high radiopurity

DARKEIDE SiPM signal: SPE spectrum

DARKSIDE SiPM signal: timing

SIGNAL & BASELINE

DARKSIDE Signal Shape

DARKBIDE Signal power spectum

Baseline noise: noise gain

Rq/N Rs N Cd N Cq + +

F

- BW & output noise spectrum depends on the SiPM static model
- 4 regions can be identified

Noise Gain

Baseline noise: noise gain

- BW & output noise spectrum depends on the SiPM static model
- 4 regions can be identified

• F <<
$$\frac{1}{2\pi (NR_s + R_q)C_q}$$
 : intrinsic unamplified e_n

F

Baseline noise: noise gain

F

- BW & output noise spectrum depends on the SiPM static model
- 4 regions can be identified

$$\begin{array}{lll} & {\rm F} << & 1 \\ \hline {2\pi (NR_s + R_q)C_q} \end{array} : {\rm intrinsic unamplified } {\rm e_n} \\ & {\rm F} << & 1 \\ \hline {2\pi R_q C_q} \end{array} : {\rm e_n} + {\rm e_T} \ {\rm amplified } {\rm by} & \frac{R_f}{R_q/N + R_s} \end{array}$$

Baseline noise: noise gain DARKSIDE

F

- BW & output noise spectrum depends on the SiPM static model
- 4 regions can be identified

F <<
$$\frac{1}{2\pi(NR_s + R_q)C_q}$$
: intrinsic unamplified e_n
F << $\frac{1}{2\pi(R_qC_q)}$: $e_n + e_T$ amplified by $\frac{R_f}{R_q/N + R_s}$
F > $\frac{1}{2\pi R_qC_q}$: $e_n + e_T$ amplified by $\frac{R_f}{R_s}$ if present)

Baseline noise: noise gain

F

- BW & output noise spectrum depends on the SiPM static model
- 4 regions can be identified

 $F \ll \frac{1}{2\pi(NR_s + R_q)C_q} : \text{intrinsic unamplified } e_n$ $F \ll \frac{1}{2\pi R_q C_q} : e_n + e_T \text{ amplified by } \frac{R_f}{R_q/N + R_s}$ $F \gg \frac{1}{2\pi R_q C_q} : e_n + e_T \text{ amplified by } \frac{R_f}{R_s}$

Natural cut-off of the amplifier

Baseline noise: power spectrum

48

DARKSIDE

MB PERFORMANCES

MB1 performances

50

NUV-HD-LF 25 μ m 10 M Ω

MB2 perfomances

- □ MB2 built from 2 FBK runs
 - The break-down voltage of the 2 runs is
 0.5 V different
- Darkside-20k MBs have a common bias
 - Run 2 SiPM are slightly underbiased
- The performances are well beyond expectation
 - □ SNR ~ 20
 - Timing ~ 3 ns
 - 600 SiPMs @ 77 K

DARKBIDE Conclusion

- The DarkSide collaboration undertook an ambitious R&D program on SiPM in 2014
- □ The R&D is now concluded
 - We can read 20 m² of SiPM instrumented surface
 - 200.000x 1cm² SiPMs
 - With about 8200 channels
 - With a SPE resolution better than 5% and 3 ns timing
- Within October we will receive the first LFoundry SiPM batches
 - **75x 8" wafers**
 - Qualifications & MB processing will require 6 months
- Within end of 2020 we will start the mass production at NOA
 - 2.5 years to produce & test all the PDMs + 6 months for the detector commissioning
 - Then we will hunt dark matter

Thank you

Backup slides

DARKBIDE Signal shape

- The signal out from a SiPM includes different components
- □ Initial peak: total charge ~10% of total
 - Rise time: limited by electronics
 - Duration: ~ 10 ns
- Recharge: 90% of total
 - 2 exponential components
 - $\textbf{I} \quad \tau_1 \approx \tau_q + \tau_L \And \tau_2 \approx 5\text{-10} \ \tau_q \mid \mid \tau_L \text{ where } \tau_q \approx R_q \ C_d \And \tau_L \approx R_L \ C_{SIPM}$
 - R_L can be tuned to keep them equal
 - $\blacksquare~$ In DS we have Cd = 50 fF, R_q = 5 M $\Omega,$ C_{SIPM} = 6 nF, R_L = 60 Ω
 - $\tau \approx 500\text{-}600 \text{ ns in } LN_2/LAr$
- The intrinsic spread of the amplitude is due to fluctuation of gain (V_{bd}) within the SPADS (few %)

DARKSUDE SPE identification

- We want to be able to extract spe from the waveform
 - Limiting the rate of fake hits (R_{BS}) to < 180 cps
 - With low losses $\varepsilon_{TH} < 1-2 \%$
 - Defining the timing of the hit with ns accuracy
- \Box Considering a simple threshold η ,
 - the rate of fake hits is $R_{BS} = F_{TIA}/\sqrt{3} \exp(-SNR^2/2*\eta^2)$ with $F_{TIA} = 30$ MHz
 - The hit detection efficiency is $\varepsilon_{TH} = 1 erf(\eta, \mu=1, \sigma=1/SNR)$
 - □ SNR > 8

- Our raw waveform do not reach the SNR of 8
 - Data filtering is needed

Filtering

- 57
- □ The noise is peaked at high frequency 1-30 MHz
- □ Most of the signal is at low frequencies < 0.5 MHz
- □ A low pass filter would already increase significantly the SNR
 - This aproach is used in the TO/Veto electronics
 - However by cutting high frequencies most the timing information are lost.
- 2 low pass filters are naturally implemented:
 - Exponential with $\tau = \tau_{ref} \sim 500$ ns (as from data)
 - = 1 order filter with 3dB cut F_{3dB} = 1/(2 π τ_{ref}) = 320 kHz, brick wall = π /2 F_{3dB}
 - Moving average with lenght = $3 * \tau_{ref}$
 - Corresponds to the integral of the signal with ballistic deficit of 5%
 - Sync response with 3dB cut $F_{3dB} = 2.78/(2\pi \ 3\tau_{ref}) = 300$ kHz, brick wall = 1.14 F_{3dB}
 - In first approssimation the SNR are similar:
 - $G_{exp} \propto 1/e\tau_{ref}$ & $N_{exp} \propto \sqrt{\pi/2} F_{3dB}$
 - $G_{ma} \propto (1-e^{-3})/3\tau_{ref} \& N_{ma} \propto \sqrt{1.14 F_{3dB}}$

Ignoring the fast peak in the waveform

Filtered waveforms

DARKBIDE Smarter filtering

59

- In digital signal processing smarter filtering is possible
 - Non causal filters have H(t) != 0 for t < 0</p>
- We can for example use the time inverted exponential as $H(t) = e^{t/\tau_{ref}} \Theta(-t)$
 - $\label{eq:Gexp} \Box ~~G_{exp} \propto 1/2\tau_{ref} ~~\&~N_{exp} \propto \sqrt{\pi} ~/2~F_{3dB}$
 - **SNR** increased by $e/2 \rightarrow 36 \%$
- Matematically we are doing a correlation with the standard exponential
 - The output is symmetric O(t) = $e^{-|t/\tau_{ref}|}/ 2\tau_{ref}$
 - The peak can easily been identified
 - For normal low pass filter output is $O(t) = t e^{-|t/\tau_{ref}|} / \tau_{ref}^2$ the peak is not so clear
- Is it the best we can do?

 Θ (-t) Heaviside Step Function

Ignoring the fast peak in the waveform

INFN

Matched filtering

- 60
- Matched filters were developed in 1950-1960
 - To detect radar pulses in the receiver noise
- Matched filters assumes that the signal contains a known signal plus a stochastic noise

s
$$(t | t_0, c) = c f(t - t_0) + n(t)$$

- Under this hypothesis it can be shown that the SNR is optimized by convoluting s(t) with f(-t)
 - **s***(t | t₀,c) = s(t | t₀,c) \circ f(-t)
 - Matched filter are the solution of least square problem
- Within linear filtering, matched filters are the best to detect the SPE

SiPM detailed electrical model

connected amplifier

