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DarkMatter 

 Many evidences hint that ordinary matter accounts only for 15% of the total matter in the universe 

 The rotation curve of galaxies  

 Weak lenses 

 Cosmic microwave backgroung 

 Dark matter is invisible to our telescopes 

 The primary candidate for dark matter is some new kind of elementary particle not yet discovered 
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DM Detection techniques 

 Dark matter can be probed with  

 Accelerators looking for missing energy in high energy interactions 

 Indirect searches looking for product of decay of DM particles 

 Direct detection experiments looking for interactions of DM particles in large instrumented detectors 

DarkSide-50 
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Direct detection challenges 

 Assuming that the DM is constituted by weekly interacting particles (WIMPs) 

 The interaction rate with a 100 ton experiment is below few per year 

 While the natural radioactivity produce a background larger than 1015 interactions per 
year 

 The challenge of dark matter detectors is to reduce the background to 0.1 
counts/year 

 By installing the detectors in underground laboratories 

 By using selected low radioactivity materials to build the detector themselves 

 By designing experiments capable of tagging the background with high efficiency  
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Double phase TPCs 

 In a dual phase time projection chamber a nobile gas 

is liquified (Ar, Ne, Xe) 

 The interaction of a particle emits a primary light 
pulse (S1) ~ 100-1000 fotons in few µs 
 In the interactions electrons are generated as well 

 The electrons are drifted toward a gas pocket on the 
top of the detector 
 Where they produce a second light pulse (S2) 

 ~ 1000-10000 photons in 20 µs 

 The light is detected by a set of photo-detectors 

 This configuration allows to reconstruct the position of 

the interaction 
 With a further suppression of external background 
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Pulse Shape Discrimination 

 For argon the light temporal profile of the S1 light strongly depends on the incoming particle 

 For nuclear recoils 70% of the light is emitted in the first 100 ns 

 For e-/γ  interaction only 30% is emitted in the first 100 ns 

 It is then possible to develop an algorithm for discriminating nuclear recoils from 
electromagnetic interation 

 This technique has proven capable of a discrimination power of ~1 part over 109 

 This is important because most natural background is e-/γ 

 And we are looking for WIMPs-induced nuclear recoil 

 Thanks to the pulse shape discrimination (PSD) Ar-based detectors can reject most of the natural 

backgroung 

 Optimal light detection is of primary importance for LAr detector 

 



DARKSIDE-20K 

7 



SiPM workshop: from fundamental research to industrial applications - Bari - 4/10/19 

8 

DarkSide program 

 The DarkSide collaboration aims to discover dark matter with a series of stepped 
size LAr-based detector 

 From 10 kg to 300 ton 

 The collaboration includes about 300 scientist from Europe, Russia, USA, Canada, 
China, Brazil 

 And unites all the effort for argon-based dark matter experiments 

 The DarkSide collaboration has a strong R&D program to improve the detector 
technologies 

 Light detection based on SiPM in collaboration with FBK 

 Extraction of underground argon to get rid of 39Ar 

 Naturally present isotope in atmospheric argon with a 1 Bq/kg activity 
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DarkSide-20k 

 DarkSide-20k is a dual phase TPC filled with 
about 50 ton of LAr 

 The detector is installed in a cryogenic vessel 
designed for Proto-Dune 

 Containing about 700 ton of LAr 

 The photo-detectors are SiPM-based 

 With a total instrumented surface of ~ 28 m2 

 

 On the other hand 39Ar is a naturally recurring 
isotope in atmospheric argon 

 To suppress the background   
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DarkSide-20k facts 

+ VETO 
~ 3000 
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Photo Detector Module 

 The Photo Detector Module (PDM) is the light sensitive unit of DarkSide-20k 

 24x SiPM 12x8 mm2 mounted on a tile 

 A front-end cryogenic pre-amplifier with differential output 

 PDMs are sensitive to the single photons 

 Up to a total of few thousands photons 

 Each PDM is connected to a 120 MS/s digitizer 

  the acquired waveform is digitally processed 

 To extract only the photon arrival time & charge 

 Offline the collected times & charges are summed 

 To reconstruct the original shape of light emission 

 Extracting the physical data of the interaction 

total energy, asymmetry, pulse shape, event position, ...  
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PDM specifications 

 The specifications for the PDMs of DS20k require 

 5x5 cm2 surface 

 PDE @ 420 nm > 40% 

 DCR < 0.08 cps/mm2 

 Baseline hit rate ≤ DCR   ↔  SNR > 8 

 Timing resolution ~ 10 ns 

 

 These parameters directly impact the PSD 

 In the integration window of 6 µs 

 20.7 m2 ◦ 6 µs ◦ DCR = 10 pe 

 Larger random hits could spoil the PSD at low energy 

Baseline hit happens when the baseline noise 
(gaussian) goes above threshold emulating a 
real photo-electron. 

Can be reduced with low noise front-end 
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Motherboards 

 PDMs are mounted on motherboards 

 25 PDM per motherboard 

 Each motherboard has 

 A power distribution hub capable of disabling individually each 
PDM 

 Called steering module 

 A differential to optical linear transmitter 

 Signals are extracted over high purity optical fibers 

 No faraday cage penetration, no ground loop → less noise 

 The PDMs are installed on a high purity copper frame 
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Collaboration with FBK 

Collaboration with FBK started in 2014 
 A shared R&D path started to improve the performances of SiPMs at cryogenic 

temperature 

 

RGB-HD 
Stable at 77 K 

DCR too high 
PDE not matched 

NUV-HD 
Stable at 77 K 

  only with High Rq 

DCR too high 

NUV-HD-LF 
Stable at 77 K 

  up to 5 VoV 

DCR ~ 5 mcps/mm2 

NUV-HD-Cryo 
Stable at 77 K 

  beyond 9 VoV 

DCR ~ 5 mcps/mm2 
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NUV-HD vs NUV-HD-LF 

NUV-HD 

NUV-HD-LF 

Below 150 K the tunneling is the main contribution to DCR 

Lower field ↔ lower DCR   
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FBK: 25 µm ~15 MΩ 
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NUV-HD vs NUV-HD-LF 

After-pulse probability 

NUV-HD NUV-HD-LF 
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NUV-HD vs NUV-HD-LF 

Direct Cross-Talk probability 

NUV-HD NUV-HD-LF 
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NUV-HD vs NUV-HD-LF 

Recharge time 

NUV-HD NUV-HD-LF 
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NUV-HD-Cryo 

 The main limitation of NUV-HD-LF is the 
narrow overvoltage for stable operation 
at 80 K with short recharge time (small 
Rq) 

 5 VoV with recharge time ~ 300 ns 

 

 NUV-HD-Cryo were developed to 
overcome this limitation 

 Up to 14 VoV 
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NUV-HD-Cryo 

Run IV: 30 µm 5 MΩ 8 VoV 
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NUV-HD-Cryo 

With a recharge time ~ 350 ns 
Data analysis ongoing 

Run IV: 30 µm 5 MΩ 
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NUV-HD-Cryo 
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NUV-HD-Cryo 

baseline noise data analysis ongoing 
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LFoundry 

 For DarkSide-20k around 28 m2 of SiPMs are required 

 The collaboration opted to produce them in an industrial grade foundry 

 LFoundry won the INFN tender for silicon production 

 FBK started transfering the NUV-HD-Cryo technology to LFoundry in 2018 

 A first test run was produced and verified in FBK 

 1x1 mm2 with several variants to qualify the processes 

 The results are very positive 

 Smaller issues were found with the backside metallization 

 3 runs 8x12 mm2 are going to be delivered within mid October 

 25 8” wafers each corresponding to ~ 250 * 75 SiPMs 

 These SiPMs will be used to instrument a 1 ton prototype 

 LFoundry & DarkSide are collaborating to have deep TSV for the forth test run   
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LFoundry NUV-HD-Cryo 

Direct FBK vs LFoundry production 

    77 K 
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LFoundry NUV-HD-Cryo 

σRq ~ 2.6 % 



CRYOGENIC FRONT-END 
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Cryogenic front-end board 

 A PDM includes 24 SiPMs 12x8 mm2 

 An analog aggregated output is desired 

 Equivalent to a 2”-3” PMT 
 

 A cryogenic front-end board is required 

 Capable of managing the ~ 24 x 5 nF capacitance of the SiPMs 

 To locally amplify the signal to few mV/pe scale 

 With good SNR (>8), bandwidth (>30 MHz) & dynamic range (>50 pe) to fulfill the PDM 

requirements 

 A trans-impedance amplifier topology is needed 

 With low power dissipation to avoid bubbling 

 Using low radioactivity components 
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Heterojunction electronics 

 Most producers are distributing heterojunction BJT based amplifiers 

 For high bandwidth applications (GHz) or for very low noise applications (sub-nV/√Hz) 

 HBTs are great signal amplifiers at cryogenic temperature 

 They are BJT  -> very low en 

 Low 1/f noise 

 Noise and bandwidth improve at cryogenic temperature 

• Standard BJT detectors are not working < 150 K 

• FET are working down to 10-40 K 

• FET technology typically: en ~ 4 nV/√Hz  &  in ~ 10 fA/√Hz 

• For fast TIA amplifiers  en is more important than in 

• FET technology may not be the best choice  
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LMH6629 characterization 

LMH6629 from TI: 

 Works down to 40 K 

 Stable for |Av| > 10 

 Very high bandwidth 

 4 GHz 

 Up to 15 GHz @ 77K 

 Very low noise 

 0.6 nV/√Hz 
 0.3 nV/√Hz 

 Max bias 5 V 

 60 mW @ 77 K 

 Pout(1dB) = 16 dBm 

 3.8 Vpp 
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LMH6629 Noise Model 

Where: 

 Req accounts for all resistors 

 en is modeled as a Johnson source 

 in is the Shotky noise of |ib| + |io| 

 No is the output noise density @ 1MHz 

 The fit reproduces the data at better than 
2.5 % 

The voltage noise density of the LMH6629 is equivalent to a 20 Ω resistor 

M D’Incecco et al., IEEE TNS 65,4,18 
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TIA design & results on SiPM 

 Standard trans-impedance design 

 Based on operational amplifier 

 Few tweaks for stabilization 

 R+ , R-, Ci 

 Cf is due to parasitic effects (~0.2 pF) 

 The series resistor Rs reduce the noise gain 

 

DOI 10.1109/TNS.2018.2799325 
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TIA design & results on SiPM 

5x5 mm  @ 300K 
SNR = 27.7 @ 5 VoV 
                      (1.3 106) 

1x1 cm²  @ 77K 
                 G = 106 

1x1 cm² & G = 106 

1x1 cm² 
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From 1 cm² to 6 cm2 

 To read 6 cm2 with the same amplifier a 
hybrid ganging solution is used 

 Virtual ground summing does not change the 
shape of the signal 

 This design increases the capacitance  seen 
by the TIA only by 50% 

 Respect to a single 1 cm2 SiPM 

 For cryogenic use a precision voltage divider 
is required 

 Otherwise the voltage division will be defined 

by the leakage current 

 

TIA bandwidth ~ 30 MHz @ 77 K 

→ 9 nF input capacitance & Rs/3 (+Rd) 
30 MHz = 7 ns rise time 
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From 6 cm² to 24 cm2 

 4 independent TIA pre-amplifiers 

 each connected to 6 SiPM 

 An active adder sums the 4 signals 

 A single-ended to differential 

 Total gain 26 kV/A 

 Plus a voltage regulator & a uC for ID 

 Total power ~ 250 mW 

 PCB based on Pyralux 

 Custom stackup for high radiopurity 

 

46x45 mm2 
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SiPM signal: SPE spectrum 

Signal amplitude [A.U.] 

1 pe 

2 pe 

3 pe 

4 pe 

5 pe 
6 pe 
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REAL DATA FROM A TILE 

24 cm2 30 µm 5 MΩ 7 VoV 
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SiPM signal: timing 

T [ns] 
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REAL DATA FROM A TILE 

24 cm2 30 µm 5 MΩ 7 VoV 
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Signal Shape 

NUV-HD-Cryo 

30 µm & 5 MΩ 

26 MHz 

sampling = 1 ns 
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Signal power spectum 

26 MHz 

1 / (2 π 520 ns) 
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Baseline noise: noise gain 
43 

 BW & output noise spectrum depends on the SiPM static model 

 4 regions can be identified 

 F <<     : intrinsic unamplified en 

 F <<  : en + eT amplified by  

 F > : en + eT amplified by         (if present)  

 Natural cut-off of the amplifier 
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Baseline noise: power spectrum 

1 cm2 @ 77 K: 

Rn = 20  Ω 
Rs = 20  Ω 

Req = 60  Ω 
Rf = 3.9 k Ω 

no = -141 dBm 

To maximise the SNR optimal 
filtering is needed 

The model reproduces the data at few % 

DOI: 10.1109/TNS.2017.2774779 
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MB1 performances 

NUV-HD-LF 25 µm 10 MΩ 

SNR = gain / σb 
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MB2 perfomances 

 MB2 built from 2 FBK runs 

 The break-down voltage of the 2 runs is 

0.5 V different 

 Darkside-20k MBs have a common 
bias 

 Run 2 SiPM are slightly underbiased 

 The performances are well beyond 
expectation 

 SNR ~ 20 

 Timing ~ 3 ns 

 600 SiPMs @ 77 K 
NUV-HD-LF 25 µm 10 MΩ 
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Conclusion 

 The DarkSide collaboration undertook an ambitious R&D program on SiPM in 2014 

 The R&D is now concluded 

 We can read 20 m2 of SiPM instrumented surface 

 200.000x 1cm2  SiPMs 

 With about 8200 channels 

 With a SPE resolution better than 5% and 3 ns timing 

 Within October we will receive the first LFoundry SiPM batches 

 75x 8” wafers 

 Qualifications & MB processing will require 6 months 

 Within end of 2020 we will start the mass production at NOA 

 2.5 years to produce & test all the PDMs + 6 months for the detector commissioning 

 Then we will hunt dark matter 
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Thank you 



Backup slides 
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Signal shape 

 The signal out from a SiPM includes different components 

 Initial peak: total charge ~10% of total 

 Rise time: limited by electronics 

 Duration: ~ 10 ns 

 Recharge: 90% of total 

 2 exponential components 

 τ1 ≈ τq + τL & τ2 ≈ 5-10 τq || τL  where  τq ≈ Rq Cd  &  τL ≈ RL CSIPM 

 RL can be tuned to keep them equal 

 In DS we have Cd = 50 fF, Rq = 5 M Ω, CSIPM = 6 nF, RL = 60 Ω 

 τ ≈ 500-600 ns in LN2/LAr  

 The intrinsic spread of the amplitude is due to fluctuation of gain (Vbd) within the SPADS (few 

%) 

D. Marano et al., IEEE TNS 11,11,13 
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SPE identification 

 We want to be able to extract spe from the waveform 

 Limiting the rate of fake hits (RBS) to < 180 cps 

 With low losses εTH < 1-2 % 

 Defining the timing of the hit with ns accuracy 

 Considering a simple threshold η,  

 the rate of fake hits is RBS = FTIA/√3 exp(-SNR2 / 2 * η2) with FTIA = 30 MHz  

 The hit detection efficiency is εTH = 1 – erf(η, µ=1, σ=1/SNR) 

 SNR > 8 

 Our raw waveform do not reach the SNR of 8 

 Data filtering is needed 
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Filtering 

 The noise is peaked at high frequency 1-30 MHz 

 Most of the signal is at low frequencies < 0.5 MHz 

 A low pass filter would already increase significantly the SNR 

 This aproach is used in the TO/Veto electronics 

 However by cutting high frequencies most the timing information are lost. 

 2 low pass filters are naturally implemented: 

 Exponential with τ = τref ~500 ns (as from data) 

 1 order filter with 3dB cut F3dB=  1/(2π τref) = 320 kHz, brick wall = π /2 F3dB  

 Moving average with lenght = 3 * τref  

 Corresponds to the integral of the signal with ballistic deficit of 5% 

 Sync response with 3dB cut F3dB= 2.78/(2π 3τref) = 300 kHz, brick wall = 1.14 F3dB  

 In first approssimation the SNR are similar: 

 Gexp ∝ 1/eτref   &  Nexp ∝ √ π /2 F3dB   

 Gma ∝ (1-e-3)/3τref  & Nma ∝ √ 1.14 F3dB Ignoring the fast peak  

in the waveform 
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Filtered waveforms 
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Smarter filtering 

 In digital signal processing smarter filtering is possible 

 Non causal filters have H(t) != 0 for t < 0 

 We can for example use the time inverted exponential as H(t) = et/τref Θ(-t) 

 Gexp ∝ 1/2τref   &  Nexp ∝ √ π /2 F3dB 

 SNR increased by e/2 -> 36 % 

 Matematically we are doing a correlation with the standard exponential 

 The output is symmetric O(t) = e –|t/τref|/ 2 τref  

 The peak can easily been identified 

 For normal low pass filter output is O(t) = t e –|t/τref|/ τref
2 the peak is not so clear 

 Is it the best we can do? 

Ignoring the fast peak  
in the waveform 

Θ(-t) Heaviside Step Function 
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Matched filtering 

 Matched filters were developed in 1950-1960 

 To detect radar pulses in the receiver noise 

 Matched filters assumes that the signal contains a known signal plus a stochastic 
noise 

 s(t|t0,c) = c f(t – t0) + n(t) 

 Under this hypothesis it can be shown that the SNR is optimized by convoluting s(t) 
with f(-t) 

 s*(t|t0,c) = s(t|t0,c) ○ f(-t) 

 Matched filter are the solution of least square problem 

 

 Within linear filtering, matched filters are the best to detect the SPE 

 



Static SiPM model 
 

 
 
 
 
 
 
 
 

The static model defines the noise gain of the 
connected amplifier 
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D. Marano et al., IEEE TNS 11,11,13 

For FBK at 77 K: 

• Cd  ~ 20 – 100 fF 
• Rq ~ 2 – 10 MΩ 

Transition frequencies 

are size independent 
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Cd/Rd with impedance analyzer 

FBK NUV-HD  --  1 cm2 SiPM 
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Rq significantly increases in LN2 
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