

Characterization of SiPM Avalanche triggering

probabilities

Giacomo Gallina Fabrice Retiere

giacomo@triumf.ca

Outline

- Introduction / Motivation.
- Avalanche Triggering Probability Modelling
- Dark Noise Modelling
- Conclusions

Introduction / Motivation

Precision-Physics Applications

Our work is primarily targeted towards low-background liquid noble experiments (Dark Matter & Neutrino) but other experiments can be considered in the future

Discovery, accelerated

TRIUMF Commercial Applications

LXe PET Scanner (Medical Imaging)

LabPET/CT (2015)

LiDAR Sensors with SiPM (3D Imaging)

Early-Fire Gas Analyzer: Use both Visible and UV light for particlets studies in area where fires are a considerable yearly problem (west-coast US, Canada).

<u>Goal of this talk :</u> Infer design parameters for future photodetector developments !

Avalanche triggering probability modelling

Photo-Detection-Efficiency

The Photo-Detection-Efficiency (PDE) is defined as the probability for a photon (of a given wavelength) to be detected and produce a measurable signal in the SiPM.

Usually PDE is defined as

lack of formal separation between the different processes that define the total PDE.
 lack of an analytical expression

How Do SiPMs Work? Solid-State Approach

p-n junctions micro-cells operated in Geigermode, with an added quenching resistor.Each SiPM is composed by multiple micro-cells.

Discovery, accelerated

How Do SiPMs Work? Solid-State Approach

p-n junctions micro-cells operated in Geigermode, with an added quenching resistor.Each SiPM is composed by multiple micro-cells.

Discove

How Do SiPMs Work? Solid-State Approach

An incoming photon enters the junction and it is absorbed (wavelength dependent process).

accelera

How Do SiPMs Work? Solid-State Approach

Discover accelerat

How Do SiPMs Work? Solid-State Approach

The internal field of the junction brings the generated carrier (e/h) to the avalanche region.

The e-h pair can be created or not in the depleted region

accelera

How Do SiPMs Work? Solid-State Approach

This triggers an avalanches, with gain ~10⁶-10⁷, which produces a readable signal.

accelera

TRIUMF Avalanche Triggering Probability

PDE needs to account for the fact that if the photon is absorbed outside of the active region, it will not be observed.

$$PDE = \epsilon_0 \cdot \int_{d_P^*}^{d_W^*} \frac{1}{\mu} \exp\left(-\frac{x}{\mu}\right) \cdot P_P(x, V) \, dx$$

The Total Avalanche Triggering Probability has both an electron-driven and a hole-driven component

$$\mathbf{P}_{\mathbf{P}}(x,V) \equiv \left(\mathbf{P}_{e}(x,V) + \mathbf{P}_{h}(x,V) - \mathbf{P}_{e}(x,V) \cdot \mathbf{P}_{h}(x,V)\right)$$

The probability to have an electron-driven avalanche is defined as

$$\mathbf{P}_{e}(d_{P}) = \left[1 - \left(k_{e} \cdot V \cdot \exp\left(-k_{e2}/\sqrt{V}\right)\right)^{-2}\right]$$

The probability to undergo a hole-driven avalanche is dependent on $P_e(d_p)$ and the field-strength factor in the junction k.

$$\mathbf{P}_{h}(d_{W}) = \left[1 - \left(1 - \mathbf{P}_{e}(d_{P})\right)^{\mathbf{k}}\right]$$

℀TRIUMF

Avalanche Triggering Probability

We redefined the PDE to include the avalanche triggering probabilities for electron and hole driven avalanches

$$PDE = PDE_{MAX} \cdot \left(P_e(d_P) \cdot f_e^* + P_h(d_W) \cdot (1 - f_e^*) \right)$$

where f_e^* is the fraction of avalanche electron driven

$$f_e^* \equiv \left[\frac{1 - \exp\left(-\frac{(x_{PN} - d_P^*)}{\mu}\right)}{1 - \exp\left(-\frac{W^*}{\mu}\right)}\right] \in [0 - 1]$$

RIUMF

ArXiv:1808.05775

- 400.0 [nm 📥 453.9 [nm] 📥 502.9 [nm]

551.9 [nm]

0.5

ArXiv:1904.05977

TRIUMF Avalanche Triggering Probability

Precise estimation of junction quantities can also be achieved and different devices can be compared

17

Discovery, accelerate

H2017 [21] 18 ± 0.1 41 ± 0.4 163 ± 1 52.2 ± 0.1 1.54 ± 0.01	k
$112017[21]$ 1.5 ± 0.1 4.1 ± 0.4 105 ± 1 52.2 ± 0.1 1.54 ± 0.01	0.25 ± 0.06
VUV ₄ [3] 0.8 ± 0.2 3.9 ± 0.8 116 ± 6 48.3 ± 0.1 1.01 ± 0.05	0.07 ± 0.06
LF [23] 0.145 ± 0.01 2.2 ± 0.1 83 ± 5 30.6 ± 0.1 0.92 ± 0.06	0.05 ± 0.01

Dark Noise Modelling

<u>Can we infer the source of the Geiger mode Dark Noise ?</u>

- Is hole or electron dominated ?
- Is SRH field enhanced or not ?
- Band to band tunnelling is important ?

To reduce the noise we need to understand its source

Example using the Hamamatsu VUV4 data

%TRIUMF

It includes 3 main noise sources

- Band to Band tunneling
- Trap assisted tunnelling
- SRH recombination
- Diffusion

SRH [Hz/(mm² x m)]

Finally the corrected slope can be predicted !

ũ ŭ

Conclusions

℀TRIUMF

Conclusions

- New technologies and ideas are fundamental for precision physics to search beyond the standard model of particle physics.
- SiPMs already provide a great option (compared to PMTs) for experiments dominated by scintillation and Cherenkov light detection.
- SiPMs challenges include: size scalability, radiopurity, good timing, overall noise reduction.
- We have introduced a novel physics-driven method to characterize and fully understand SiPMs, including avalanche-triggering-probability (<u>ArXiv:1904.05977</u>).
- We are working on new models to precisely infer the source of the noise and optimise future SiPM development
- We are commissioning new set-up to better understand and design new generation of SiPMs ! Strongly interested in collaborations.

Thank you

www.triumf.ca

Discover accelerat

% TRIUMF

Photo-Detection-Efficiency

accelerat Discover

Correlated Avalanches (CAs)

Pulse Shape Fitting

Rise Time: $au_r \propto (R_d \cdot C_j)$ Parasitic Spike: $au_S \propto (R_{tot} \cdot C_{tot})$ Recovery Time: $au_L \propto (R_q \cdot C_j)$

k: relative contribution of t_s and t_L .

$$V(t) = A \cdot \left[\left(\frac{1-k}{\tau_S} \right) \cdot \left(e^{-t/(\tau_S + \tau_r)} - e^{-t/\tau_r} \right) + \left(\frac{k}{\tau_L} \right) \cdot \left(e^{-t/(\tau_L + \tau_r)} - e^{-t/\tau_r} \right) \right]$$

New Setup at TRIUMF

VUV Optics and SiPM Characterization Setup

Discovery, accelerated

∂TRIUMF

Boosting SiPM VUV Efficiency

VUV Setup Design:

- Reflectance, Transmission, Fluorescence and more.
- Deuterium Lamp 100-400 nm continuous source spectrum.
- Advanced monochromator for precision wavelength selection.
- Ability to cool the sample to cryogenics temperatures.
- Ability to control the sample and readout position and tilt-angle.
- Reference PMT capable of sampling the beam via a parabolic mirror.
- Cryogenic sample holder with the ability to operate cold Diode/SiPM/PMTs.

Discovery, accelerated

℀TRIUMF

Early AR-Coating Results

AR Surface coating is critical for the ultimate VUV sensitive SiPM. (Issue: Si reflectivity at ~175 nm is ~50%) (SiO2 has poor transmission ~128 nm).

Important to balance transmission and reflectivity to identify the most optimal AR surface coating for 3DSiPM.

Optical Material Selection Campaign: Currently Under Investigation:

- Al_2O_3
- MgF₂
- LiF
- LaF₃
- Pure Al

Discovery, accelerated

% TRIUMF

Early AR-Coating Results

AR Surface coating is critical for the ultimate VUV sensitive SiPM. (Issue: Si reflectivity at ~175 nm is ~50%) (SiO2 has poor transmission ~128 nm).

Important to balance transmission and reflectivity to identify the most optimal AR surface coating for 3DSiPM.

Optical Material Selection Campaign: Currently Under Investigation:

- Al_2O_3
- MgF₂
- LiF
- LaF₃
- Pure Al

