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Short Gamma-Ray Burst (SGRB)

• Gamma-ray photons are the 
highest energy light

• GRBs are groups of gamma-
rays that last milliseconds to 
hours and “outshine the 
universe”

• Sources of GRBs are ultra-
relativistic, highly collimated 
beamed outflow jets  
associated with supernova, 
and binary-neutron stars 
(BNS), etc…

• GRBs are categorized by the 
duration of light curves 
(photon count rate vs time)

• SGRBs are less than 2 
seconds, otherwise they are 
long GRBs
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>10 keV,  < 10-9 cm, >1019 Hz



SGRBs Coincident with Gravitational Waves

• Fermi-GBM had the first verified 
joint detection of a SGRB (GRB 
170817A) with a gravitational wave 
(GW170817)

• LIGO and Virgo are two GW 
observatories on earth that detected 
this GW event

• This coincident detection and 
subsequent EM follow-up provide 
direct evidence that BNS are 
progenitors of SGRBs

• Many questions remain about GRB 
physics

• Are the spectral properties observed 
in GRB 170817A common to all 
compact object merger events? 
What about GRB150101B?

• What is the origin of gamma-ray 
emission?

• What angular structure to jets have?
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Abbott et al. 2017

SGRB
1.7 seconds
later



Multi-messenger Landscape of 170817
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• Science of multi-messenger event 170817 was a triumph of the entire field.
• The coincident detection of a SGRB and association with a GW was the catalyst

E. Burns 2019, arXiv:1909.06085

Black lines: 
170817 
observations

Dark regions: 
other SGRB 
associated 
observations

Shaded 
regions: 
expected 
observations



BurstCube: A CubeSat for GW Counterparts
• Needs of the science community from gamma-ray experiments 

are continued sensitivity, and broad-band sky coverage
• Results are independent confirmations of GW triggers, localization 

constraints in real-time, additional NS mergers detected through GWs

• BurstCube will enable and complement future GRB, GW, and BNS 
science by detecting, localizing, and characterizing SGRBs

• BurstCube will measure energy response of GRBs 50 keV - 1 MeV

• BurstCube will provide rapidly available high-resolution temporal, 
spectral and location data; expecting ~20 SGRB/year 

• BurstCube is currently in its development and testing phase to 
prepare for launch readiness in the fall of 2021
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Racusin et al. arXiv:1708.09292v1

Preliminary

Total sky coverage for GRBs is 
enhanced with BurstCube

Preliminary

BurstCube’s effective area 
represents sensitivity to 
gamma-rays and is comparable 
to Fermi/GBM (green line)



Response has cosine-like dependence 
on GRB incident angle.
GRB Localization is based on relative 
rates between the detectors

Preliminary
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Goldstein et al. 2017

256 ms bin50–300 keV 
Energy band 

BurstCube will produce light 
curves similar to Fermi/GBM

Fermi/GBM light curve of GRB170817A

Racusin et al. arXiv:1708.09292v1



BurstCube: Instrument Design

• BurstCube is a 6U CubeSat
• Deployable Solar Panels & full ACS 
• Low-earth orbit, Nanoracks deployed 

(ISS orbit)
• Instrument Package

• 4 CsI(Tl) scintillator crystals coupled to 
arrays of low-power Silicon Photo-
Multiplier (SiPM)s with custom 
electronics

• 90 mm diameter, 19 mm thick
• 116 SiPMs summed per crystal

• Communications
• BurstCube will relay data to the ground 

via TDRSS 
• 5-15 minute goal with an updated Vulcan 

radio
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Launch Delivery Goal: 
Late 2021

1U ~ 10 cm3

Approx 4.5 W 
allowed for 
instrument (4Us)



Gamma-rays 
scintillate in the 
CsI(Tl)

Actively summing SiPMs to shape slow 
response of CsI

Power less than 1 W for all four boards, < 1 W 
for digital back-end, approx 2 W for bias

CsI(Tl) dimensions
90 mm diameter
19 mm thick

Custom, in-house designed, 
front-end electronics (FEE)
-heliophysics group at GSFC

BurstCube Detector
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Response of CsI(Tl) > 1 μs



Using SiPMs with Crystal Scintillators
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• We performed trade 
studies with other 
SiPMs: Hamamatsu 
best low noise high 
gain

• Gain: order ~ 106

• pixel size: 50 μm
• Dimensions: 6 mm x 6 

mm
• VBR = 53 ± 5 V

CsI(Tl) Emission Spectrum

CsI(Tl) Half emission range: 
475 nm – 625 nm
Peak: 550 nm

SiPM Detection 
Efficiency
Hamamatsu 
S13360-6050VE

Half efficiency range: 
350 nm – 650 nm
Peak: 450 nm

SiPM detection 
efficiency is 
matched well 
enough to CsI(Tl) 
emission

Proteus CsI(Tl)6 mm



BurstCube 116-SiPM Array FEE Board
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Preliminary

Preliminary
Preliminary

SiPM FEE board was tested with gamma-ray 
radiation sources 26 keV – 1.33 MeV

Temperatures tested span  -10 °C to +50 °C
I2C sensor integrated on FEE

It’s linear! 

Resolution is good enough!



Noise Measurement with SiPM Array
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Repeat noise measurements over temperature range

Noise increases with temperature

At what temperature range can 
we achieve our desired energy 
range?

Preliminary

Preliminary

Preliminary

Preliminary



SiPM FEE Noise with Am-241 Source
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26 keV peak
Peak is indistinguishable at 38 °C

• Gaussian fits to noise (FWHM) and peak (mean) are plotted vs. applied bias 
voltage from -8 °C to +41 °C

• Thermal analyses show expected temperature range during BurstCube flight is 
within +5 °C to +33 °C

• BurstCube can operate beyond the required energy range for the mission

Preliminary

59 keV peak is seen up to 41 °C 

Preliminary



Breakdown Voltage of SiPM FEE Measured
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• SiPM breakdown voltage increases with increasing temperature and 
the gain must be compensated by adjusting the applied bias voltage

• Measured breakdown voltage sensitivity to temperature is linear 
for BurstCube SiPM array

Preliminary

Preliminary

Sudden increase in current denotes breakdown voltage

Δ3V
Breakdown voltage



Test of Compensation with Cs-137
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• Bias voltage is adjusted for each temperature to match pulse heights with 
Cs-137

• Overvoltage of ~2.7 V results in constant gain
• Use the temperature compensation in thermal vacuum tests

Peak height
~0.920 ± 0.005 V

Resolution (FWHM)
8.54 ± 0.08 %

Typical pulse height distribution with fit photo-peak
Cs-137 photo-peaks

Bias(T) = 0.005⨉T  + 55.3937 

Breakdown = 0.005⨉T  + 52.6998 
Preliminary

Preliminary



Gain Control with Temp Compensation
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• Bias voltage can compensate for temperature variations well within the 
temp range of the mission

• Temperature compensation was successfully applied during the thermal 
vacuum tests

Preliminary

Preliminary



Pre-launch Environmental Tests*

• Vibration Tests (vibe)
• Verifies if instruments can 

survive rocket launch and 
deployment

• Thermal-Vacuum Tests (TVAC)
• Verifies instrument 

performance in space vacuum 
over temperature variations 

• Tests workmanship of parts
• Includes non-powered survival 

temps (-10 °C, +50 °C), hot 
operational (+45 °C), and cold 
operational (-5 °C)

• All tests successfully follow 
GEVS and were completed 
July 2019

• Detector functionality tests 
and analysis verify success or 
failure (not an option). 

• Measure energy response 
with a gamma-ray radiation 
source

• Tests ran during TVAC with 
temperature compensation 
applied

• Following an independent 
review of the technology 
readiness level (TRL), 
BurstCube will be at TRL-6 
(TRL-1: do unicorns exist?, 
TRL-9: this unicorn is from 
space)
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*per NASA Goddard’s General Environmental Verification Standard (GEVS)



Proto-flight 
Instrument Quarter

The real experts
BurstCube on the vibe table

Sideview of instrument quarter

Proto-flight in the 
TVAC chamber

Prelim
inary
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BurstCube Current Status
• First BurstCube proto-flight detector has been 

constructed
• Design, integration and test of the 116-SiPM FEE 

board has been completed and exceeds requirements
• Proto-flight detector has successfully completed 

environmental vibration and thermal vacuum testing 
in July 2019

• Pending an independent TRL review, BurstCube will 
be at TRL 6

• Instrument digital (FPGA) electronics design and 
prototyping has begun

• Requirement documentations for interfaces to the 
spacecraft, Instrument flight software, ground 
pipelines and analysis, and calibration and simulations 
are in work

• Flight hardware build is expected to begin end of this 
year

• Expected delivery of spacecraft to launch vehicle is 
planned for 2021
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BurstCube Team
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