

SiPM Arrays for Space-Based Detectors

Dr. Anthony L. Hutcheson High Energy Space Environment Branch Space Science Division

Who We Are

U.S. Naval Research Laboratory

- The corporate laboratory for the United States Navy
- Main campus located in Washington, DC
- Conducts basic research concerning the Navy's environments of Earth, sea, sky, and space
- Pioneered naval research into space
 - Vanguard: America's first satellite program

High Energy Space Environment Branch

- Advancing the understanding of the high energy environment through:
 - the development and deployment of advanced detectors in space
 - simulation of environments & operating concepts
 - interpretation and theoretical modeling of observed phenomena

SiPM Instrumentation at NRL

Emphasis of this

presentation

- Experience instrumenting SiPM arrays
- Heritage of successful space- and ground-based systems

Applications

- Space-based
- Ground-based
- Science-focused
- Security-focused

Attractive Qualities of SiPMs

- Mechanical ruggedness
- Size
- Low voltage bias
- Relatively high quantum efficiency

Challenges with SiPMs

- Degraded performance at higher temperatures (> 30 °C)
- Large capacitance for arrays (sizes ≈ 6 cm² and greater)

Space Test Program

U.S Department of Defense (DoD) Space Test Program (STP)

- Provides space flight to the DoD's space science and technology community for experiments, new technologies and demonstrations.
- Mission: space qualify new technology for the DoD
- Available competitively to qualified and relevant investigations
- Service provided at no cost to the experimenter and includes
 - Spacecraft
 - Integration and testing (on spacecraft)
 - Launch
 - One year mission operations (e.g., spacecraft and instrument commanding, data handling and delivery)
- Experimenter covers the cost of
 - Development and construction of the instrument
 - Pre-ship environmental testing
 - Analysis of data.
- A typical STP flight will host numerous experiments.

Strontium Iodide Radiation Instrument (SIRI-1)

- Space qualification of Srl₂(Eu) and SiPMs
- Launch: STPSat-5 (sun-synchronous LEO) 03 Dec 2018

Goal

 Demonstrate and characterize this new technology for use as a component in larger space-based defense- or science-related missions

Design Overview

- Total SWaP
 - Size: 8.9 cm (H) x 14 cm (D) x 15 cm (L)
 - Mass: 1.620 kg
 - Power: 1.5 W
- Detector
 - Single Srl₂(Eu)
 - 17 x 17 x 40 mm³
 - 4% resolution at 662 keV
 - Density: 4.55 g/cm³
 - 2 x 2 array of 6-mm SensL J-series SiPMs

Currently successfully operating in orbit!

PI: Dr. Lee J. Mitchell (NRL)

SIRI-1

Detector

- (Left) Packaged Srl₂(Eu) crystal purchased from Radiation Monitoring Devices, Inc.
 - Opted for optical window to allow experimentation with different vendor-supplied SiPMs
- Optical window and SiPMs (right) result in ~1% resolution increase compared to ultra-bialkali PMT
 - Measured resolution: 4% at 662 keV

System components

- 1. Single-board computer: Beaglebone Black
- 2. Detector clamp
- 3. EMI filter
- 4. Multichannel analyzer: Kromek K102
- 5. Custom printed circuit board
 - Includes power conditioning, temperature sensors, preamplifier, SiPM bias control

SIRI Pre-ship Testing

Pre-ship Temperature Testing

SIRI-1 Early Results

Gross gamma-ray count rate showing the elevated background as the instrument transitions through the various trapped particle regions. The four zones A, B, C and D were used generate the spectra shown in plot above right. No data is indicated by the white areas of the plot (when data acquisition is paused in the SAA).

SIRI-2

Design Overview

- Primary detectors
 - Seven Srl₂(Eu)
 - Hexagonal close-pack design
 - 38.1 mm diameter (19.05 mm per side) x 38.1 mm length
 - SiPM readouts
 - 19 6-mm SensL J-series SiPMs in hexagonal array on PCB
- Active shield
 - Six plastic detectors for approx. 4π coverage
 - Anticoincidence rejects high energy cosmic-ray protons that pass through the detector and shielding.
- Passive shield
 - Reduce low energy photons during solar events (prevent "swamping" of system)
 - Reduce Bremsstrahlung produced by electrons interacting with enclosure
- Single Csl detector
 - External to passive gamma shield
 - Measure low-energy hard x-ray component of solar flare

- Multi-crystal design improving upon SIRI-1
- Solar gamma-ray spectrometer
- Launch: STPSat-6 (GEO) Aug 2020 (expected)

SIRI-2

GAGG Radiation Instrument (GARI)

- Leveraging previous work on SIRI-1 to space qualify GAGG + SiPMs
- Targeting manifest: STP-H7 April 2022 launch (expected)

Goal

- Space qualify Gd₃(AI, Ga)₅O₁₂ (GAGG) scintillator with SiPM array
- Wherever possible, replicate SIRI-1 design

Design Overview

- Detector
 - Single GAGG(Ce)
 - 30 x 30 x 30 mm³
 - ~5% resolution at 662 keV
 - Good mechanical properties
 - Not hygroscopic
 - Density: ~6.3 g/cm³
 - 4 x 4 array of 6-mm SensL J-series SiPMs
 - Currently being fabricated
 - 3 x 3 array shown right used for testing
- Proposed for STP-H7
 - Expected launch to International Space Station (ISS) in April 2022

PI: Dr. Lee J. Mitchell (NRL)

U.S.NAVAL RESEARCH

All-Sky Medium Energy y-Ray Observatory (AMEGO)

- Medium-energy γ-ray survey mission, NASA probe-class concept
- Balloon flight (Ft. Sumner, NM) Fall 2021

Csl Hodoscope with SiPM Readout

- Testing and balloon-flight prototype shown below
- $17 \times 17 \times 100 \text{ mm}^3 \text{ CsI(TI) crystals}$
- 2 x 2 array of 6-mm J-series SiPM on each end of crystal
- DAQ: IDEAS ROSSPAD
 - 64-channel SiPM ASIC
 - Four 16-channel SIPHRAs

AMEGO

Glowbug

PI: Dr. J. Eric Grove (NRL)

- All-sky 30 keV 2 MeV band transient monitor optimized for GRBs
- Targeting manifest: STP-H9 early 2020s launch

Technology Demonstrator

U.S.NAVAL

RESEARCH

Low-cost high-sensitivity GRB detector for gravitational wave era

- Large scintillator array
 - CsI(TI) + SiPM readout (12 detectors, each 15 x 15 x 1 cm³)
 - Good stopping power; not hygroscopic
 - Low size, weight, and power readout
 - CLLB + SiPM readout (6 detectors, each Ø5 x 10 cm)
 - Additional effective area above 1 MeV
 - Sensitive to both photons and thermal neutrons
 - Front end and DAQ from SIRI-2
 - Low power, space qualified
- Selected by NASA APRA
 - Funding began March 2019
- Proposed for STP-H9
 - Launch to International Space Station (ISS) in early 2023

Glowbug

U.S.NAVAL RESEARCH LABORATORY

Conclusion

High Energy Space Environment Branch

- Active group with varied interests
- Experience designing, fabricating, and deploying instruments with SiPM arrays in space and terrestrial environments
- Heritage of success in cutting-edge instrumentation and scientific discovery in:
 - high energy astrophysics
 - high energy atmospheric physics
 - security and nonproliferation applications
- We welcome collaboration (and postdocs)!

Conclusion

Instrument Principle Investigators

- Dr. Lee J. Mitchell <u>lee.mitchell@nrl.navy.mil</u>
 - SIRI-1
 - SIRI-2
 - GARI
- Dr. Richard S. Woolf richard.woolf@nrl.navy.mil
 - AMEGO Csl calorimeter
- Dr. J. Eric Grove <u>eric.grove@nrl.navy.mil</u>
 - Glowbug

Acknowledgments

- SIRI-1, SIRI-2, and GARI are supported by the Chief of Naval Research.
- AMEGO and Glowbug are supported by NASA.