Particle identification capability of Plastic scintillator tiles equipped with SiPMs for the High Energy cosmic-Radiation Detection (HERD) facility

F. Gargano on behalf of the HERD Collaboration

INFN-Bari
CHINA
– Institute of High Energy Physics, CAS, Beijing
– Xi’an Institute of Optical and Precision Mechanics, China
– Purple Mountain Observatory, CAS, Nanjing
– University of Science and Technology of China, Hefei

ITALY
– INFN Bari and University of Bari
– INFN Firenze and University of Firenze
– INFN Perugia and University of Perugia
– INFN Pisa and University of Pisa
– INFN Lecce and University of Salento
– INFN Laboratori Nazionali del Gran Sasso and GSSI Gran Sasso Science Institute

SPAIN
– CIEMAT - Madrid
– ICCUB - Barcellona

SWITZERLAND
– University of Geneva
The **High Energy cosmic-Radiation Detection** (HERD) facility is a China-led international space mission that will start operation around 2026.

The experiment is based on a **3D, homogeneous, isotropic and finely-segmented calorimeter** that fulfills the following requirements and goals:

<table>
<thead>
<tr>
<th>Main requirements</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma$</td>
<td>$e$</td>
<td>$p$, nuclei</td>
</tr>
<tr>
<td><strong>Energy Range</strong></td>
<td>0.5 GeV, 100 TeV</td>
<td>10 GeV, 100 TeV</td>
<td>30 GeV, 3 PeV</td>
</tr>
<tr>
<td><strong>Energy resolution</strong></td>
<td>1% @ 200 GeV</td>
<td>1% @ 200 GeV</td>
<td>20% @ 100 GeV -1 PeV</td>
</tr>
<tr>
<td><strong>Effective Geometric Factor</strong></td>
<td>&gt;1 m$^2$sr @ 200 GeV</td>
<td>&gt;3 m$^2$sr @ 200 GeV</td>
<td>&gt;2 m$^2$sr @ 100 TeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Scientific goals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct measurement of cosmic rays flux and composition up to the knee region</td>
<td></td>
</tr>
<tr>
<td>Gamma-ray monitoring and full sky survey</td>
<td></td>
</tr>
<tr>
<td>Indirect dark matter search ($e^+e^-$, $\gamma$, ... )</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HERD</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>$e/\gamma$ Energy res.@100 GeV (%)</td>
<td>&lt;1</td>
</tr>
<tr>
<td>$e/\gamma$ Angular res.@100 GeV (deg.)</td>
<td>&lt;0.1</td>
</tr>
<tr>
<td>e/p discrimination</td>
<td>&gt;10^6</td>
</tr>
<tr>
<td>Calorimeter thickness ($X_0$)</td>
<td>55</td>
</tr>
<tr>
<td>Geometrical accep. (m^2sr)</td>
<td>&gt;3</td>
</tr>
</tbody>
</table>
Physics goals

**Expected charged particles fluxes in 5 years**

HERD will measure the $e^+ e^-$ flux up to several tens of TeV
- spectral cutoff at high energy,
- local SNR sources of very high energy $e^-$
- anisotropy measurement

**HERD will measure the flux of nuclei:**
- $p$ and He up to a few PeV
- nuclei up to a few hundreds of TeV/n

**First direct measurement of $p$ and He knees** will provide a strong evidence for the knee structure as due to acceleration limit

**Expected $\gamma$ sensitivity**

**Sky survey @ 5\sigma level**

**Targets of Gamma-Ray Sky Survey:**
- search for dark matter signatures
- study of galactic and extragalactic $\gamma$ sources
- study of galactic and extragalactic $\gamma$ diffuse emission
detection of high energy $\gamma$ Burst

**Multi-messenger astronomy**

Possible synergy with other experiments designed for $\gamma$ (CTA), $\nu$ (KM3, IceCube), GW (Ligo, Virgo)
The detector

**CSS** expected to be completed in 2022

<table>
<thead>
<tr>
<th>Life time</th>
<th>&gt; 10y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>Circular LEO</td>
</tr>
<tr>
<td>Altitude</td>
<td>340-450 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>42°</td>
</tr>
</tbody>
</table>

**HERD** expected to be installed around 2026

<table>
<thead>
<tr>
<th>Life time</th>
<th>&gt; 10y</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOV</td>
<td>+/- 70°</td>
</tr>
<tr>
<td>Power</td>
<td>&lt; 1.5 kW</td>
</tr>
<tr>
<td>Mass</td>
<td>&lt; 4 t</td>
</tr>
</tbody>
</table>

**CALO**
- Energy Reconstruction
- e/p Discrimination

**STK**
- Trajectory Reconstruction
- Charge Identification

**PSD**
- Charge Reconstruction
- \( \gamma \) Identification

**TRD**
- Calibration of CALO response for TeV proton

---

F.Gargano - SiPM Workshop - 2-4 October 19 - Bari (IT)
HERD Plastic Scintillator Detector (PSD)

PSD provide $\gamma$ identification (VETO of charged particles) and nuclei identification (energy loss $\propto Z^2$)

Back-scattering can greatly degrade the performances

### Bar - option
- Long bars 160x3x1 cm$^3$
- Each layer made by two staggered sub layer to increase hermeticity
- Read-out with 4 SiPM (two for each end)
- **PRO**
  - Less number of readout channel
- **CONS**
  - Higher Back-scattering problem

### Tile - option
- Small square tile 10x10x1 cm$^3$
- Two layer of tiles to increase nuclei identification power
- Each tile is readout by 4 SiPM (one for each side)
- **PRO**
  - Reduce back-scattering problem
- **CONS**
  - Higher number of readout channel

In China (IHEP) and Italy (GSSI and Lecce) there are ongoing activities on this option

In (Bari and Pavia) there are ongoing activities on this option

I will present some results for this option
SiPMs suitable to replace PMT

- low voltage
- compact
  - Good for space missions
  - better sensitivity to low light yields

Plastic scintillator + SiPMs are being tested in recent years for future missions.

**Requirements:**

- Overall High efficiency and low dark noise for charged particles rejection (>0.9999)
- Good energy resolution for better charge particle detection
- High dynamic range for high Z identification
We have developed a simulation that tracks every optical photon generated by scintillation in a tile. The code is based on GEANT4.

We have simulated a tile 10x10x1 cm³.

The tile is equipped with 6 SiPM 4x4 mm² placed on the four sides and on the top and bottom face.

In this simulation we can change a lot of parameters such as:

- Tile size
- Number and position of SiPMs
- Light Yield and attenuation length of the scintillator
- Birks parameters
- Physical parameters of the wrapping
The simulation code takes into account the Birks saturation effect

\[ \Delta N = \frac{Y \cdot \Delta E}{1 + c0 \cdot \Delta E} + Y1 \cdot \Delta E \]
We have simulated particles crossing the tile in the center (TiO2 diffuse reflector)
Protons crossing the tile in the center and in a corner (TiO2 diffuse reflector)

**CENTRAL POS**

- **TOP**
  - Effect of prompt direct light in central position

- **SIDE**
  - 50% of photons are collected in 5ns
  - 80% of photons are collected in 10ns
  - The collection time does not change with particle type

**CORNER POS**
We have built two tile prototypes to test the performances

**Tile 1 (BC-404)**
- Squared shape with a side of 15 cm and thickness of 1 cm.
- Two angles were cut at 2.5 cm from the corner.
- 12 ADVANSID NUV SiPMs (40 µm cell; Gain $10^5$):
  - n.6 1x1 mm$^2$ (Small)
  - n.6 4x4 mm$^2$ (Large)

**Tile 2 (BC-404)**
- Squared shape with a side of 10 cm and thickness of 1 cm.
- n.4 4x4 mm$^2$ ADVANSID NUV SiPMs (40 µm cell; Gain $10^5$)

**Readout electronics from ADVANSID**
- Transimpedance amplifier with low and high gain (x5) output
- RC filter for tail cancellation

**DAQ: CAEN QDC V792**
Tile 1

PS - T10: 5 GeV particles (e/π)
Scintillator irradiated in different positions → dependence of collected light on beam position

SPS – H8: 20 GeV particles (e/π)
Scintillator irradiated only in the central position → efficiency studies

Tile 2

SPS – H4: beam line with a beam of selected momentum of 330 GeV/Z, coming from a primary beam of lead, with energy 150 GeV/A, impinging onto a Beryllium target.
Scintillator irradiated in the central position → capability to discriminate ion charges
- **Small SiPMs** (1x1mm$^2$ area):
  - Charge distributions fitted with multi-gaussian functions
  - Areas of individual peaks fitted with Poisson distributions
  - Calibration with dark counts

- **Large SiPMs** (4x4mm$^2$ area):
  - Individual peaks still visible in charge distributions, but difficult to fit due to low statistics
  - Rebinning of histograms and fit with a Landau distribution folded with a gaussian
  - Calibration with dark counts
Small SiPMs
Large SiPMs

Channel 0

Channel 2

Channel 4

Channel 6

Channel 8

Channel 10
Efficiency and dark noise evaluated as function of p.e. in single, AND and OR configuration

<table>
<thead>
<tr>
<th>Thr</th>
<th>Ch 0</th>
<th>Ch 6</th>
<th>AND</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 p.e.</td>
<td>0.99997</td>
<td>0.99997</td>
<td>0.99997</td>
<td>0.99997</td>
</tr>
<tr>
<td>5 p.e.</td>
<td>0.99984</td>
<td>0.99984</td>
<td>0.99981</td>
<td>0.99981</td>
</tr>
<tr>
<td>10 p.e.</td>
<td>0.99224</td>
<td>0.99224</td>
<td>0.99212 &lt; 0.00001</td>
<td>0.99998</td>
</tr>
</tbody>
</table>
Top SiPMs collect less light than Side SiPMs

**Side SiPMs:** the high gain amplification appears to be inappropriate, since the readout chain allows resolution up to $Z = 3$

**Top SiPMs:** the high gain channels are able to resolve more peaks than the Low gain ones
Some improvement achieved if we sum together the signals from SiPMs

- Linear fit
- Birks relation
Lesson learned

Tile 1
- Small SiPM collects very few photons
- Response is almost uniform in the tile (30-40 p.e. for large SiPMs), with peaks in the points closer to the SiPMs
- Efficiency reached with this configuration is very high, fulfilling the requirements of anti-coincidence systems in cosmic ray satellites.

Tile 2
- Nuclei detection and identification up to Z=8 with single channel
- Summing up the equivalent channels → clear improvement in the signal
- The readout used in these tests limited the dynamics → must be improved.

In conclusion, this study shows that SiPM technology can be used instead of the classical PMTs in space experiment both to reject charged particles and to identify ions.

A lot of work is still needed to design proper readout electronics, to study the timing performances, to study the effect of dark noise and cross talk on resolution and to increase the overall performances.
THANKS!!
Back up slides
### Channel Resolution vs Resolution of He peak (σ/peak position)

<table>
<thead>
<tr>
<th>Channel Resolution</th>
<th>Resolution of He peak (σ/peak position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low gain, Side</td>
<td>0.1601 ± 0.0005</td>
</tr>
<tr>
<td>Summed low gain, Side</td>
<td>0.1296 ± 0.0004</td>
</tr>
<tr>
<td>Summed high gain, Side</td>
<td>0.1355 ± 0.0006</td>
</tr>
<tr>
<td>Summed low gain, Top</td>
<td>0.2042 ± 0.0008</td>
</tr>
<tr>
<td>Summed high gain, Top</td>
<td>0.2813 ± 0.0008</td>
</tr>
</tbody>
</table>
Signals collected and calibrated for each SiPM using the dark count distributions measured in runs without particles.

Gain evaluated from the distance between two adjacent p.e. peaks once the pedestal has been subtracted.

To calibrate the signal distribution, we subtracted the pedestal from the raw data, and divided by the gain, allowing the conversion of ADC counts to detected photons.
To identify the nuclei with a system different from the tile under test the signals from S0 and Sh were used. The red line is obtained by fitting the peaks with gaussian functions up to the nineteenth peak.