

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

The Era of Multi-Messenger Astrophysics

Proven Technique

- Angular resolution ~0.1°
- Energy resolution ~10%
- Excellent background suppression

Trinity: Baseline Configuration

Air Showers for Lovers

6

Detected Cherenkov Light

Optics

Based on J. Cortina et al., Astrop. Physics 72 (2016) 46

●FoV 5° X 60°.

●5.6 m focal length.

●0.3° optical PSF.

- 20 mm Winston cones coupled to 9 mm SiPMs.
- ●3,300 pixel camera.
- •68 m² mirror area \rightarrow **16 m²** in any direction.

Rotates in elevation.

- Thin-glass replica mirror technology ~\$2k/m².
- Implementation based on MAGIC structure.
- \$170k for one telescope (excl. camera).

Photon Detector Requirements

- High sensitivity >600nm where Cherenkov emission peaks
- Single photoelectron signals < 100 ns
- Sensor diameter <1 cm</p>
- A dark-count rate of several 100 kHz is below the background photon intensity

SiPMs are a good match

Evaluated SiPMs

- FBK RGB-HD with 15um and 25 um pixels
- FBK NUV-HD (used in CTA-SCT camera upgrade)
- Hamamatsu S14520 50 um cells (Optimized for CTA, p-on-n)
- Hamamatsu S14420 50 um cells (Optimized in red, n-on-p)

Procedures described in NIMA Otte et al. (2016)

Photon Detection Efficiency

@ 90% breakdown probability

Photon Detection Efficiency

@ 90% breakdown probability

Figure of Merit Studies for SPB2

Nepomuk Otte

Evaluation Summary

Device	Peak PDE [%]	Peak Wave- length [nm]	Optical Cross- talk [%]	After- pulsing [%]	Delayed Optical Crosstalk [%]	Dark- count rate [kHz/mm ²] @ 20C	Operating Voltage [V]	Over- voltage [%]	Cell size [um]
RGB-HD	27	560	14	1.5	4	200	33	11	25
NUV-HD	56	390	15	1	<1	80	31	22	40
S14520	52	470	1	5	5	50	44	9	50
S14420	46	610	6	<1	0.5	200	50	20	50

See backup slides for details

SPB2

Ultra-long duration flight from New Zealand in 2021One Cherenkov Telescope

•One Fluorescence Telescope

Objectives

- Test imaging of air-showers from high altitudes
- Evaluate background sources

Electronics for SPB2 and Trinity

Signal Chain Proof of Concept ADC Counts 0088 Sample [10 ns] Counts) 2200

For details see arXiv:1907.08728

Front-End Electronics

50 mW/channel

Conclusions

- Air-shower imaging is a viable technique to search for UHE neutrinos from ground and space.
- New experiments feasible because of SiPMs
- Different SiPMs show similar and acceptable performance
- More ASIC developments of front-end electronics for SiPMs would be great.

Figures Measurement Results

Comparison FBK RGB-HD and Hamamatsu S14520-6050CN

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

Nepomuk Otte

Nepomuk Otte

delayed optical crosstalk [%]

Nepomuk Otte

Hamamatsu S14420-3050WO-RESIN

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

Specs

- Round device 3mm diameter
- 50um cells
- Estimated number of cells 2827
- Operating point 20% above breakdown
- 40ns boundary between delayed OC and AP

delayed optical crosstalk [%]

Nepomuk Otte

Measurements: FBK NUV-HD3-4

Katherine Powell Nepomuk Otte

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

Specs

Uncoated
6.3mm x 6.3mm
40 um cells

Other backup

Bias Curves

Triggered Viewing Angles

Signal Chain

Same as in NO et al. EUSO-SPB2 PoS(ICRC2019)977

MUSIC: preamp ASIC developed for IACTs.

AGET digitizer: 100MS/s, switch capacitor readout, 12 bit.

•\$100 per channel \rightarrow \$330k per camera

Tested with picosecond laser flashing Hamamatsu S14520 SiPM + MUSIC + AGET

Acceptance vs. Light Collection Area

How much Field of View?

Full image containment is required.

UHE Tau initiated Air-Shower Fun Facts

Sensitivity vs. FoV above Horizon

Sensitivity vs. FoV below Horizon

71

Acceptance

Impact of Night Sky Background

Thin-Glass Mirrors

POEMMA MISSION

Mission Lifetime: 3 years (5 year goal) Orbits: 525 km, 28.5° Inc Orbit Period: 95 min Satellite Separation: ~25 km – 1000+ km Satellite Position: 1 m (knowledge) **Pointing Resolution: 0.1°** Pointing Knowledge: 0.01° Slew Rate: 8 min for 90 ° Satellite Wet Mass: 3860 kg Power: 2030 W Data: 1 GB/day Data Storage: 7 days Communication: S-band (X-band if needed) Clock synch (timing): 10 nsec

Operations:

- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to re-orient satellites if desired

Dual Manifest ATLAS V LPF

POEMMA: study collaboration

USA: University of Chicago: Angela V. Olinto (PI), R. Diesing NASA/GSFC: John Krizmanic (deputy PI), E. Hays, J. McEnery, J. W. Mitchell, J. S Perkins, F. Stecker, T. M. Venters NASA/MSFC: P. Bertone, M.J. Christl, R. M. Young, University of Alabama, Huntsville: J. Adams, E. Kuznetsov, P. Reardon, University of Utah: D. R. Bergman Colorado School of Mines: J. Eser, F. Sarazin, L. Wiencke, City University of New York, Lehman College: L. Anchordogu, T. C. Paul, J. F. Soriano Georgia Institute of Technology: A. N. Otte Space Sciences Laboratory, University of California, Berkeley: E. Judd University of Iowa: M. H. Reno **DENMARK: NBI: M. Bustamante FRANCE:** APC Universite de Paris 7: E. Parizot, G. Prevot; IAP, Paris: C. Guepin **GERMANY: KIT: R. Ulrich, M. Unger; ESO: F. Oikonomou ITALY:** Universita di Torino: M. E. Bertaina, F. Bisconti, F. Fenu, A. Liberatore, K. Shinozaki: Gran Sasso Science Institute: R. Aloisio, A. L. Cummings, I. De Mitri; INFN Frascati: M. Ricci JAPAN: RIKEN: M. Casolino, Y. Takizawa **SLOVAKIA:** IEP, Slovak Academy of Science: S. Mackovjak **SWITZERLAND:** University of Geneva: A. Neronov

POEMMA Neutrinos

POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of tau decays.

POEMMA Hybrid MM Focal Surface

Cherenkov Detection with SiPMs: 20 nsec sampling

30 SiPM focal surface units Total 15,360 pixels

512 pixels per FSU (64x4x2) Si-Diode for LEO radiation backgrounds rejection

Observing Modes

Nadir for UHECR: Radius 200-400 km

MICHIGAN

Detroit

Milwaukee

Chicago

Limb for deutrinos & UHECRs

Cuba

Radius 2.6-3.7 103 km

United States

Mexico

POEMMA Neutrino TOO

(Targets of Opportunity) Venters et al. arXiv: 1906.07209

Artist's rep NS-NS merger. Credit: Credit: NSF/LIGO/ SSU/A. Simonnet. Transient Events few to 100 Million neutrinos/event

10 neutrinos up to 120 Mpc!

Artist's rep WD-WD merger Credit: Ars Technica

Binary Coalescence

Source Class	No. of <i>v</i> 's at GC	No. of <i>v</i> 's at 3 Mpc	Largest Distance for 10 ν 's per event	Model Reference
TDEs	10 ⁶	7	2.5 Mpc	Dai & Fang (2017) average
TDEs	5×10^{6}	35	5.6 Mpc	Dai & Fang (2017) bright
TDEs	2×10^8	1668	$40 { m Mpc}$	Lunardini & Winter (2017) $M_{\rm SMBH} = 5 \times 10^6 M_{\odot}$
TDEs	NA	16000	120 Mpc	Lunardini & Winter (2017) $M_{\rm SMBH} = 1 \times 10^5 M_{\odot}$
Blazar Flares	NA	1400	35 Mpc	Rodrigues et al. (2018) – FSRQ proton-dominated advective escape model
BH-BH merger	6×10^7	400	$20 { m Mpc}$	Kotera & Silk (2016) – $t_{ m dur} \sim 10^4 \ m s$
BH-BH merger	$3 imes 10^{10}$	212297	400 Mpc	Kotera & Silk (2016) – $t_{ m dur} \sim 10^{6.7} { m s}$
NS-NS merger	$3 imes 10^7$	188	13 Mpc	Fang & Metzger (2017)
WD-WD merger	39000	0.3	500 kpc	Xiao et al. (2016)
Newly-born pulsars	8000	0.06	226 kpc	Fang (2015)

Tidal Disruption Events

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

Newborn Pulsars

Crab 965 years ago!

Credit: Credits: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

Gamma-Ray Bursts, Blazar Flares

GW170817 follow up with POEMMA arXiv:1906.07209

Long bursts

Short bursts

Science Motivation:

- What is the composition of UHECR?
- What are the sources of UHECR?
- Extension of IceCube detected ν flux to 10° GeV?
- Search for "new" physics

Three year sensitivity

