EHzürich

FACT – the First G-APD Cherenkov Telescope

Status and Experience from Seven+ Years Operation of the First SiPM Camera

Dominik Neise for the FACT Collaboration

technische universität dortmund

IACT - Imaging Air Cherenkov Telescope

Cherenkov telescopes measure faint flashes of Cherenkov light emitted when a cosmic-ray particle or gamma ray interacts with the atmosphere.

Typically one measures showers with 50 Cherenkovphotons within few ns over a 50 GHz night sky background for dark night conditions.

Number of Cherenkov Photons is ~proportional to energy of primary particle.

D. Neise: FACT – Status and Experience from Seven Years Operation

FAC

SiPM Bari 2019

D. Neise: FACT - Status and Experience from Seven Years Operation

Detailed List of Problems due to G-APD (SiPM)

Detailed List of Problems due to G-APD (SiPM)

thank you for your attention

FACT

FACT – History

FACT – History

2007: First Cherenkov flashes seen with few G-APDs attached to MAGIC camera [NIM A 581]

2008: Collaboration of ETH Zurich and Universities Dortmund, Geneva, Würzburg (+EPF Lausanne) to build a G-APD based camera for HEGRA CT3

2009: *Module0* (36 pix, 4 G-APD/pix) records self-triggered Cherenkov images from the roof of ETH Zurich [JINST4 P10010] \rightarrow go for complete camera

Focal Plane

SiPM Bari 2019

D. Neise: FACT - Status and Experience from Seven Years Operation

FACT

Integrated electronics DRS4 readout

320 bias voltage channels (1 per 4\5 G-APDs)

Power consumption ≤500W Readout via Ethernet

160 trigger patches (sum of 9 channels)

FACT – the First G-APD Cherenkov Telescope

Oct. 2011: mounted in refurbished HEGRA CT3 (9.5m² mirror) at La Palma

> some faces changed; large fraction of the active collaboration; many tasks manpower limited ...

FACT

FACT – Selected events of the first nights of data-taking (October 2011)

Uniformity & Stability of Camera – 1 Year of data

(our) G-APD gain has strong temperature dependency $(\sim 4\%/degree)$ \rightarrow Feedback system \rightarrow adjust applied voltage to Temp. (and DC)Nowadays you can even buy power supplies doing this for you.

SiPM Bari 2019

Uniformity & Stability of Camera – 1 Year of data

(our) G-APD gain has strong temperature dependency (~4%/degree) \rightarrow Feedback system \rightarrow adjust applied voltage to Temp. (and DC)

Counts 1 pixel crosstalk (5ms data) probability' 10² 10 qain ²⁰⁰1pe ⁴⁰⁰2pe 1200 800 1000 1400 3pe Extracted charge [0.5ns · mV]

Monitor gain with 1pe spectra:

(dark noise + crosstalk are your friends)

\rightarrow dark noise + crosstalk allow calibration without any external device

D. Neise: FACT – Status and Experience from Seven Years Operation

SiPM Bari 2019

Uniformity & Stability of Camera – 1 Year of data

(our) G-APD gain has strong temperature dependency (~4%/degree) \rightarrow Feedback system \rightarrow adjust applied voltage to Temp. (and DC)

→ dark noise + crosstalk allow calibration without any external device

D. Neise: FACT – Status and Experience from Seven Years Operation

FACT

FACT – Stability of System

FACT – Stability of System

For a given pointing, trigger should always see the same rate of cosmic rays.

Ratescans show cosmic ray trigger-rate independent of moon, sensor temperature and age of sensors.

FACT – Stability of System

For a given pointing, trigger should always see the same rate of cosmic rays.

400 00 800 900 10 Threshold [dac counts] 500 600 1000 Ratescans show cosmic ray trigger-rate independent of moon, sensor temperature and age of sensors.

Bad atmospheric conditions give us a handle on 2nd order effects.

D. Hildebrand et al., Higher Order Temperature Dependence of SiPM used in FACT, PoS(ICRC2017) 778

D. Neise: FACT – Status and Experience from Seven Years Operation

SiPM Bari 2019

FACT – Stability of 2nd order temperature effects

FACT – Longevity

FACT – Signal & Background

sensitivity curve of the first G-APDs not well adjusted to Cherenkov spect.

collect much more NSB (and moon) than optimized PMTs

Nevertheless, FACT can operate with lot of moonlight without aging

FACT – Signal & Background

June 23rd 2013 brightest fullmoon of the year

SiPM Bari 2019

FACT – Collected Charge

integrating over time, divide by dark-night DC (5µA) for each sensor: **collected same charge as in ~1.6k dark night observations** dark noise: ~0.5µA (laboratory)

ightarrow collected same charge as in ~43 years continuous op. in laboratory

FACT – Automation

FACT – Automation

remote data-taking from anywhere (since mid 2012)

follow us at http://fact-project.org/smartfact

FACT - Status and Experience from Seven Years Operation

Evening: Arm System

Night: Sleep

Morning: Parked?

Calls shifter if human interaction is needed

SiPM Bari 2019

D. Neise: FACT – Status and Experience from Seven Years Operation

FACT – Science

FACT – Science

D. Neise: FACT – Status and Experience from Seven Years Operation

FACT – Science

1ES 1959+650 – X-ray (keV) / TeV Correlation

Conclusion

- G-APDs are excellent sensors for IACTs
- temperature dependence can easily be corrected for
- (moderate) dark noise and crosstalk deliver an excellent calibration device for free (no need for lightpulsers etc.)
- stability allows to predict trigger rates; allows to measure quality of the atmosphere; ideal for long-term monitoring
- long term stability in IACTs much better than PMTs

Conclusion

- G-APDs are excellent sensors for IACTs
- temperature dependence can easily be corrected for
- (moderate) dark noise and crosstalk deliver an excellent calibration device for free (no need for lightpulsers etc.)
- stability allows to predict trigger rates; allows to measure quality of the atmosphere; ideal for long-term monitoring
- long term stability in IACTs much better than PMTs

We all know:

G-APD are not a 1-to-1 replacement of PMT

thank you for your attention