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P | Outline IF_!]

- 2 future CMS sub detectors which are planning on using SiPMs

- General experience from last > 10 years of R&D on raddam on SiPMs

- Results of latest Wafer run with FBK on thin epitaxial layer substrate

- Main effects of raddam at very high doses > 5E13 n/cm2 1 Mev eq
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in CE-E and high-radiation regions of CE-H

“Cassettes”: multiple modules mounted on

cooling plates with electronics and absorbers
* Scintillating tiles with SiPM readout in

low-radiation regions of CE-H

* Hexagonal modules based on Si sensors

Active Elements:
Key Parameters:

* CEcovers1.5<n<3.0

* Full system maintained at -30°C

¢ ~600m? of silicon sensors

* ~215 tonnes per endcap
* ~500m? of scintillators

* 6M sichannels, 0.5 or 1 cm? cell size

* ~27000 si modules

* Power at end of HL-LHC: ~110 kW

per endcap

~2m

350 400 450 500 550
Z [cm]

300

250

CMS Simulation Preliminary

CMS FLUKA Study v.3.7.9.1

Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 28 layers, 25 X, & ~1.3\

Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, ~8.5\
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We expect a signal of
~ 40 p.e/MIP

le

the biggest part of CE for high

T

is very important

ISEe

Signal to No

in
granularity to compliment CE-E

SiPM-on-

for calibration
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CMS,

CMS - Barrel Timing Layer for Phase I1 li?_!)

SiPM array to readout LYSO array (2 sides)

Stochastic term - data and interpolation fi DCR noise term - data and interpolation fit
014 B

DCR [ps]
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DCR [GHZz]
,/ Npe

Bench measurement of the timing dependance of the Nphe and DCR using an LED
with a pulse of 390 p.e. and time spread of 350 ps rms.

At 2E14 n/cm2 eq. the DCR is expected to rise to 40-60 GHz even at an operating
temperature inside the tracker tube of -30C. The DCR noise term will quickly be the
dominating factor in the timing resolution.
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CMS

Leakage current increase in Si-PIN diodes

DCR or Noise increase in SiPMs due to rad lﬂ

for 1 MeV equivalent dose
slope= 3.5E-17 A/lcm
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We expect the dark count rate:

Dark Count=1/g*V * ® * slope * G.F. * P

V= cell size * depi (few microns in case of SiPM)

Measurements show ~4X more noise

‘ Projected Noise for IDEAL 15 micron 1 mm2 SiPM (alfa =3.5E-17 Alcm) |

10°F
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RMS noise (p.e. in 25 ns)
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HCAL SiPM data at 15C (15 micron 30% PDE)

——e—— Noise at cooling at

se at 15C
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The dark noise generation rate in APDs/
SiPMs is dominated by high electric field
effects mainly by tunneling via radiation-
induced defects or traps in Si
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| Efield Tunneling etfects vs Temp and irrad Il\_)
K
Relative DC vs. T after irradiation (~*10*? n/cm?)
g a
o
3 ——1
x X A FBK SiPM
8 4 : * KETEK SiPM
? ° ? = Hamamatsu MPPC
§ : T x CMS APD (M=200)
5 )| ¢ PIN S3590-08 (U=50 V)
: 0.1 .
0 10 20 30 40
Temperature [°C]
Before Irradiation: After irradiation we find that
Primary dark count rate is due to the thermal temperature reduction coefficient
generation of carriers; 1/T (reduction of 2.4 x drops to as low as 1.6/ 10C
every 100) depending on the internal electric field

structure of the SiPM
General trend is that SiPMs with higher
Vbr have larger reduction with T
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CMS

2018 HPK and FBK SiPMs after 2.1E14 n/cm? li?_!)

250 10 000 photons, 410 nm light, 100 ns integration time
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V-VB [V]

In 2018 we chose the best 3 SiPMs with the best performance vs irradiation for the
BTL as a TDR baseline. All cell sizes are 15x15 micron to avoid saturation due to high
DCR. This also reduces the recovery time
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CMS

FBK wafer split for optimization

Wafer n. Substrate Technology DI dose Meas Vbr (RT)
1 Thin Epi Low Field 1
2 Thin Epi Low Field 1 38.0
3 Thin Epi Low Field 2
4 Thin Epi Low Field 2 35.2
5 Thin Epi Low Field 2
6 Thin Epi Low Field 3
7 Thin Epi Low Field 3 33.0
8 Thin Epi Low Field 4
9 Thin Epi Low Field 4 32.0
10 Thin Epi Low Field 4

In addition each wafer has 2 different micro cell versions
one aggressive for better FF

15 micron STD : 51.2 %
15 micron HFF : 60.1 %

it et mend oS

DIl dose

smaller

TDR Thin epi

larger

largest

Ij=h
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Irradiation in ceramic Package of the waters ll?_!]

We packaged the 8 different Types in a 8ch ceramic package

3 of these arrays were sent to JSI for passive irradiation
for a total dose of 1E13, 2E14 and 4E14

For direct comparison we also included 3 HPK 3x3 mm HDR2 for each dose

3 )
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CMS

PDE(410 nm) [%]

60
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10

Measured PDE before irradiation

SiPM, T=20 °C

3 4 5 6 7 8
V-VB [V]

9 10 11

Average number of photons in LED pulse is measured using XP2020 calibrated:

PMT (QE(410 nm)=25.0 %, ENF=1.15), and waveforms recorded by DSO
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CMS

LYY
Approach of measurement of irradiated SiPM Ilﬂ)
-

SiPM, T=20 °C SiPM, T=20 °C
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0 0.9
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To measure S/N after irradiation we use constant light illumination
from 405 nm LED source (calibrated uniform over the 8ch):

| (total) = I(ph) + I(dark) =(I'ph + I'dark)* Gain*ENF  with ENF ~1
I’'ph and I'dark are the primary generated currents (before amplification)
|(total) and I(dark) are measured simultaneously (LED On and LED off)

Phcurrent= I'ph/1.6E-19
DCR = I’'dark/1.6E-19
S/N = Phcurrent/DCR
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CMS

Silicon Annealing vs temperature
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- We use 60C for 80 min to simulate RT annealing
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CMS

I(ph) measured before and after irradiation I@

Dose = 1.4E13 n/cm eq.

FBK array, T=-28 °C
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I(ph) is unchanged after irradiation and annealing:
Hence PDE,Gain and ENF are unchanged at this dose
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Dark Current A]

Currents reach 2 mA at 3V over voltage

DCR after irradiation of 1.4E13 n/cm? li?_!)

T=-31°C
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which starts to cause self heating of the SiPM

T=-31°C
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CMS,

405 nm, T=-31 °C
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CMS

Previously measured Vbr shift with rad lﬂ

Using the CERN IRRAD 24 GeV proton beam we irradiated a 8 ch Array
with 10 micron HPK S12572 SiPMs

A. Heering et al. / Nuclear Instruments and Methods in Physics Research A 824 (2016) 111-114 5X5 I I | | I |2
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Fig. 3. 10 um cell HPK 8 channel array with @ 2.8 mm SiPMs with a maximum dose of 2.2 x 10" n/cm? in channel 2. (a) Dark current vs. bias voltage. (b) Bias voltage shift vs.
dark current at gain 1.

Ch.2 —irradiated with 24 GeV protons (~2.2E14 n/cm?)
Ch.8 —irradiated with 24 GeV protons (~7.5E12 n/cm?)

Due to Change of the doping concentration:
VB shift with fluence reaches 4 V at 2.2E14 n/cm2

Vbr = 66 V at zero dose
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VB [V]
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CMS

HPK HDR?2 after 2E 14 li_\_!']

Other EFFECT we found at 2E14 is QE loss
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This could be a combination of ; Recombination of e-h in top p+ layer
and Browning of protective resin used (under investigation)
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CMS . A =
FBK thin epi after 2E14 Il\_ll)
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e R&D on the use of mini peltiers  IJSL

power consumption vs AT phononic  2x2x0.8 mms3

O expected SiPM power set on RTD
O measured pelt power
O total power

250

200

o
E 100
o
50 120
@ Before irradiation
O After 4E14 n/cm2
0 90
0 5 10 15 20 25 §“
Delta Temperature (C) E
5 60
2
[e]
o
Advantage of the use of mini peltiers: 30
- AT of -20C without extra power .
- Annealing at +60C during LHC shutdowns 20  -10 0 10 20 30 40

Delta T (C)
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CMS

Summary IF_!]

After successful replacement of HPDs with SiPMs in the CMS HCAL in the last 6 years
with a neutron dose of max 2E12 n/cm2

We now plan to also use them in two more sub-detectors in CMS:
HGCAL and BTL.

This bring significant new challenges due to the large fluence of 2E14 n/cm2 1MeV eq.
(Even though we will operate at -30C)

Large DCR linear with the fluence

Breakdown voltage shift due to change in doing concentration
Self heating of the SiPMs due to the large gain

Loss of PDE in front p+ layer and/or the protective resins used

We like to thank FBK and Hamamatsu for the commitment to this project and the
progress made in the last years to improve the SiPMs for these projects

R&D will continue.....
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