

SiPM R&D for NEXO

F. Retière on behalf of the nEXO photo-detector group

TRIUMF Searching for $0\nu\beta\beta$ in ¹³⁶Xe with liquid Xe TPC **nEX**

Liquid-Xe Time Projection Chamber (TPC)

- Xe is used both as the source and detection medium.
- Monolithic detector structure, excellent background rejection capabilities.
- Cryogenic electronics in LXe.
- Detection of scintillation light and secondary charges.
 - 2D read out of secondary charges at segmented anode.
 - Full 3D event reconstruction using also scintillation light:
 - 1. Energy reconstruction
 - 2. Position reconstruction
 - 3. Event Multiplicity

Discovery, accelerated **% TRIUMF**

- Anticorrelation between scintillation and ionization in LXe known since early EXO R&D [E.Conti et al. Phys Rev B 68 (2003) 054201]
- Rotation angle determined weekly using ²²⁸Th source data, defined as angle which gives best rotated resolution
- EXO-200 has achieved ~ 1.23% energy resolution at the double-beta decay Q value in Phase II.

nEX

∂TRIUMF

Photon detection in nEXO

- Energy resolution dominated by light
 - Need 3% efficiency of detecting scintillation photons for 1 % energy resolution
 - With negligible noise for light detection
- Need at least 4 m² of detection area
- Need reflective electrodes

Electric field concern?

- Static EField was found to be a nonissue
- However charge-up may still be an issue

SiPM Performance under E-field

- In nEXO, SiPMs will be exposed to external E-fields up to ٠ $\sim 20 \text{ kV/cm}$.
- SiPM performance in various E-fields at cryogenic ٠ temperatures (~ 150 K) have been tested in CF₄.
- The tested SiPMs show good stability under the influence of ٠ different electric field strengths.
- Need to test in LXe and understand if surface charge buildup • is an issue.

SiPM for lowest radioactivity content

	²³⁸ U	²³² Th	⁴⁰ K
Prelim. nEXO requirements for 4m ²	< 0.1 nBq/cm ²	<1 nBq/cm ²	< 10 nBq/cm ²
FBK SiPM (bare wafers) ^A	<0.4 nBq/cm ²	~0.6 nBq/cm ²	~3 nBq/cm ²
Hamamatsu MPPC (packaged) ^B	<7 µBq/cm²	<3 µBq/cm ²	<3 µBq/cm ²
SensL SiPM (packaged) ^C	<1.1 mBq/cm ²	<33 µBq/cm ²	<69 µBq/cm ²

^A Counting at U.Alabama after nuclear activation at MIT shown at this meeting
 ^B Hamamatsu Ge counting in house. Assume 300μm SiPM thickness. Confidential
 ^C NEXT Ge counting. http://arxiv.org/abs/1411.1433

PMT type	Normalized activity [mBq/cm ²]				Ref.		
	$^{238}\mathrm{U}$	226 Ra	228 Th	$^{235}\mathrm{U}$	^{40}K	60 Co	
R11410-21	< 0.4	0.016(3)	0.012(3)	0.011(3)	0.37(6)	0.023(3)	this work
R11410-20	< 0.56	< 0.03	0.028(6)	< 0.025	0.37(6)	0.040(6)	this work
R11410-10	< 3.0	< 0.075	< 0.08	< 0.13	0.4(1)	0.11(2)	[20]
R11410-10 (PandaX)	—	< 0.02	< 0.02	0.04(4)	0.5(3)	0.11(1)	[12]
R11410-10 (LUX)	< 0.19	< 0.013	< 0.009	_	< 0.26	0.063(6)	[21]
R11410	1.6(6)	0.19(2)	0.09(2)	0.10(2)	1.6(3)	0.26(2)	[20]
R8778 (LUX)	< 1.4	0.59(4)	0.17(2)	_	4.1(1)	0.160(6)	[21]
R8520	< 0.33	0.029(2)	0.026(2)	0.009(2)	1.8(2)	0.13(1)	[20]

Discovery, accelerated

Oct 2, 2019

% TRIUMF

VUV light detection challenges

• Reflections

Shallow absorption depth

Measuring reflections in vacuum

Φ

elerat

Analog SiPMs photo-detection efficiency

- Requirements > 15%
- Challenges
 - Reflectivity > 50%
 - Attenuation length in Si ~5.8nm
- Good progress
 - FBK meet specifications
 - Hamamatsu is close
 - We measure significantly lower PDE than HPK

% TRIUMF

Discovery, iccelerated **% TRIUMF**

Analog SiPM nuisance – dark noise

 Specification is < 50Hz/mm2 which is easily met

arXiv:1806.02220v3

Analog SiPMs nuisance – correlated avalanches

- Specification < 0.2
 FBK need to stay below 2.5V
 Hamamatsu need to stay below belo 3.5V
- Correlated avalanche directly worsen energy resolution
- Some cross-talk photons may be emitted in the liquid and fire other SiPMs

Large scale integration

- Test PCB for FBK 1x1cm² SiPMs
- ASIC developed by BNL

איש פון	3	2	
	4	5	6
⊌e Ke () ()	6 A		Ó Æ

Hamamatsu all silicon package <FRONT SIDE>

∂TRIUMF

SiPM analog electronics – a challenge

• Requirements

- <10mW/cm2 dissipated</p>
- Single photon charge resolution < 0.2
- In parallel configuration may require too high over-voltage

15

3DdSiPMs electronics layer for nEXO

16

CMOS chip is working

3DdSiPM ideal architecture for nEXO

activated for the duration of the scintillation

Discovery, accelerated

nEX

18

DAQ

the

0

Oct 2, 2019

RIUMF

3DdSiPMs integration

19

Silicon interposer = a silicon PCB

- Motivation:
 - Very low radioactivity of silicon
 - Perfect coefficient of thermal expansion matching with SiPM
- Issue: can transmission line and via be good enough
 - Capacitance and resistance per unit length
- R&D within nEXO
 - Led by China: IHEP and Institute of micro-electronics
 - Led by Canada with a contract to Fraunhofer IZM (Berlin)

Summary

- nEXO a liquid Xenon detector searching for neutrino less double beta decay
- Light detection is critical to nEXO's success → driving a vigorous R&D program
 - Successful development of VUV SiPM and associated electronics
- Supporting 3DdSiPM development in Canada
- Lots of detector results coming up soon
- And hopefully a ground breaking discovery in 5-10 years

University of Alabama, Tuscaloosa AL, USA M Hughes, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan
University of Bern, Switzerland — J-L Vuilleumier
Brookhaven National Laboratory, Upton NY, USA —

M Chiu, G Giacomini, V Radeka, E Raguzin, S Rescia, T Tsang University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada

I Badhrees, R Gornea, C Jessiman, T Koffas, B. Veenstra, J Watkins Colorado State University, Fort Collins CO, USA

C Chambers, A Craycraft, D Fairbank, W Fairbank Jr, A Iverson, J Todd Drexel University, Philadelphia PA, USA

MJ Dolinski, P Gautam, E Hansen, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA — PS Barbeau

Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, J Hoessl, T Michel, M Wagenpfeil, T Ziegler
IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard
IHEP Beijing, People's Republic of China — G Cao, W Cen, Y Ding, X Jiang, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, X Zhang, J Zhao
IME Beijing, People's Republic of China — L Cao, X Jing, Q Wang
ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich

University of Illinois, Urbana-Champaign IL, USA

Oct 2, 201

D Beck, M Coon, J Echevers, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, SJ Daugherty, G Visser Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, U Wichoski

Lawrence Livermore National Laboratory, Livermore CA, USA J Brodsky, M Heffner, A House, S Sangiorgio, T. Stiegler University of Massachusetts, Amherst MA, USA S Feyzbakhsh, D Kodroff, A Pocar, M Tarka McGill University, Montreal QC, Canada

T Brunner, K Murray, T Totev, L Darroch, S Al Kharusi, T McElroy University of North Carolina, Wilmington, USA — T Daniels Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, RJ Newby Pacific Northwest National Laboratory, Richland, WA, USA I Arnquist, EW Hoppe, JL Orrell, G Ortega, C Overman, R Saldanha, R Tsang Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, K Odgers Université de Sherbrooke

F Bourque, S Charlebois , M Côté, D Danovitch, H Dautet, R Fontaine, F Nolet, S Parent, JF Pratte, T Rossignol, J Sylvestre, F Vachon

SLAC National Accelerator Laboratory, Menlo Park CA, USA S Delaquis, A Dragone, G Haller, LJ Kaufman, B Mong, A Odian, M Oriunno, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA T Bhatta, A Larson, R MacLellan Stanford University, Stanford CA, USA J Dalmasson, R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, M Patel, A Schubert, M Weber, S Wu Stony Brook University, SUNY, Stony Brook NY, USA — K Kumar, O Njoya Technical University of Munich, Garching, Germany P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada

J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA — A Jamil, Z Li, D Moore, Q Xia

Deep UV light detection – other applications

- Smoke analysis
 - Mie scattering of deep UV light for a portable and low power smoke detector
- Gas analysis
 - Detect fluorescence induced by deep UV light
- Developing a unified concept: Single Photon Air Analyser
- And of course PET using LXe
 - Is LXe a good scintillator for TOF PET?
- But also liquid Argon for physics and other applications

EXO-200. Modeling energy resolution

- EXO-200 data shows very strong (98% correlation) between recombination (e-loss) and increase scintillation
- EXO-200 energy resolution dominated by APD electronics noise

24

sover elerat