JUNO-TAO Experiment with Large Area High Performance SiPMs

Guofu Cao (on behalf of JUNO)

Institute of High Energy Physics SiPM Workshop, Bari, October 2 – 4, 2019

JUNO Experiment

Jiangmen **U**nderground **N**eutrino **O**bservatory, a multiple-purpose neutrino experiment, under construction, online in 2021

Inner LS | 12 cm acrylic | 2.35 m water | SS lattice+PMTs | 1.2 m water+PMT | HDPE *Outside*

- 20 kton LS detector
- $3\%/\sqrt{E(MeV)}$ energy resolution
- **Rich physics possibilities**
 - Reactor neutrino for Mass hierarchy and precision measurement of 3 oscillation parameters
 - ⇒ Supernova neutrino
 - ➡ Geo-neutrino
 - Solar neutrino
 - ➡ Proton decay
 - ➡ Exotic searches

JUNO-TAO

- Taishan Antineutrino Observatory (TAO), a satellite experiment of JUNO.
 Taishan Nuclear Power Plant, 30 35 m from one of the 4.6 GW_{th} reactor cores
 Total cost, 4-5 M\$
- ***** Measure reactor neutrino spectrum w/ sub-percent E resolution
- *** Ton scale Gd-doped Liquid Scintillator (Gd-LS)**
- ***** Full coverage of SiPM w/ PDE > 50% > 2.5%/ $\sqrt{E(MeV)}$ energy resolution with PMTs of PDE 24%
- **I SiPM dark noise ※ Operate at -50 ℃ (SiPM dark noise)**
- **# 4500 p.e./MeV**
- *** Online in 2021**

Location of JUNO and JUNO-TAO

***** Provide reference spectrum for JUNO, to remove model dependence by measuring fine structures

> Required equal or better energy resolution than JUNO $\rightarrow 3\%/\sqrt{E(MeV)}$

***** Provide a benchmark to examine nuclear database, measuring fine structures

- > Design TAO w/ as high E resolution as possible (~1% at 1 MeV)
- ***** Measuring isotopic neutrino spectrum
 - > Extend to different fission fraction; test ab initio spectra
- ***** Reactor monitoring
- *** Sterile neutrino**
- ***** Possible new findings w/ unprecedented resolution

- * Laboratory in a basement at -10 m, 30-35 m from Taishan core (4.6 GW_{th})
- ***2.6 ton Gd-LS in a spherical vessel**
 - > 1-ton FV, ~4000 IBDs/day
 - ~2000 detected IBDs/day, due to 50% efficiency of muon veto and IBD neutron tagging
- **I m² SiPM of 50% PDE Operate at -50℃**
- ***** From Inner to Outside
 - ➤ Gd-LS
 - Acrylic vessel
 - SiPM and support (Cu shell)
 - Cryogenic vessel (SS + insulation)
 - > 1~1.5 m water or HDPE shielding
 - > Muon veto

- Done by MC simulation, assumed parameters listed as follows.
- *** Dominated by statistics**
 - ➢ SiPM coverage 94%
 - **≻ SiPM PDE 50%**
- Scintillator quenching impacts more in low energy region
- *** IBD neutron recoil contributes to high energy region.**
- * Charge resolution 16% (30% for PMTs)
- ***** Optical cross talk 10%
- **I The Second S**

Parameters

Photon detection efficiency

Dark noise rate

Probability of correlated

		U
		1
Specification	Comments	
> 50%	~400nm, not include correlated avalanches	
< 100 Hz/mm ²	At -50 °C	
< 20%	Including optical cross talk, delayed optical cross talk and after pulsing	
< 10%	For the case w/o bias voltage tuning	

noise		cross talk and after puising	
Uniformity of V _{bd}	< 10%	For the case w/o bias voltage tuning	
Area per SiPM chip	>= 6 x 6 mm²	For easy handling and high coverage	
Coverage of SiPM chips in one tile	> 90%	Not included in PDE, TSV preferred	
Radio-purity (Bq/kg)	U: < 4.4; Th: < 6.3; K: < 1	SiPM + resin + PCB + Elec.	

It's a tradeoff between SiPM PDE and dark noise/correlated noise.

May not be up-to-date	SensL	Hamamatsu	FBK
Туре	MicroFJ-60035	S14160/S14161	NUV-HD
Cell size (µm)	35	50	40
Cell Fill factor (%)	76	74	81
PDE (%)	51	50	56
Peak wavelength (nm)	420 (250-900)	450 (270-900)	410 (280-700)
Dark count rate (kHz/mm ²)	70	166	150
Gain	6.0 x 10 ⁶	2.5×10^{6}	3.5 x 10 ⁶
Crosstalk probability (%)	20	7	10

In table, Vop for Hamamatsu is 2.5 V, Vop = 5 V for SensL and FBK

The performance of some SiPMs looks promising.

*** PDE** of SiPMs at low temperature (-50 $^{\circ}$ C)

Measured SiPMs:

- **Model S13360 6025CS from HPK**
- ASD-NUV4S-P-4x4TD from AdvanSiD

Data analysis

pe number per pulse is a distribution of

poisson :

 $f(k) = \frac{\mu^k}{k!} e^{-\mu}$

By intergrating the entry of the peak(k=0):

$$f(0) = e^{-\mu} = \frac{N_{peak}}{N_{total}}$$

SiPM PDE at room T and -50 °C

- **•** The absolute PDE is normalized to the number given in datasheet.
- We did not observe significant differences of PDE at room temperature and -50 °C, for SiPMs -- S13360 6025CS and ASD-NUV4S-P-4x4TD.

Absolute PDE from room T to -50 °C (IHEP)

Results of absolute PDE

The absolute PDE keeps **UNCHANGED** from room temperature to -50 °C, for SiPM --**NUV-HD-LowCT (6 mm*6 mm) from FBK**

A setup to measure spectral and angular response of SiPMs

16

FBK-NUV-HD-LowCT

Readout schemes

- **Size of a single SiPM device -- 6 x 6 mm²**
- ***** One tile consists of 8 x 8 SiPMs 25 cm²
- ***** Possible readout schemes
 - > Option 1: discrete components, one tile one channel
 - > Option 2: ASIC, one tile one ASIC (~30 channels)
- ***** Open to other options

50 mm

18

Readout test at Roma Tre (discrete components)

One output channel for (up to) 25 cm² SiPM SIPM in series/parallel configuration

64 SiPM elements, V_{bias} < 60 V (series of two SiPM).

Front end board with 4 NUV-4S tiles delivered at IHEP (July 2019).

FE board + NUV-4S at -50 °C (Rome3)

***** JUNO-TAO is proposed to precisely measure reactor neutrino energy spectrum.

- * PDE of SiPMs has been carefully studied in JUNO-TAO for several SiPMs from different vendors.
 - \succ No significant difference of PDE at room temperature and -50 $^{\circ}$ C

***** Full characterization of SiPMs is ongoing, dark noise rate/optical cross talk/after pulse/...

*** Good progress on readout development and testing.**

Welcome suggestions and new collaborators!

LS at low temperature

- **JUNO**: LAB+2.5g/L PPO+1~3mg/L bis-MSB
- ♦ Solubility at -50°C :
 - 1 g/L < PPO <1.2 g/L; 0.2 mg/L < bis-MSB < 0.5 mg/L
- Cured w/ co-solvent

LAB + 2 g/L PPO + 1 mg/L bis-MSB + **0.5% pentanol** (or 0.1% ethanol)

Survey of the room and transportation * Power supply: OK [∗]N2 supply: OK **Water supply: OK * Ventilation: 1000 m³/h * Measured Muon flux** >1/3 surface ***** Neutron flux/spectrum >40% surface **Gamma radioactivity** >3 times of my office

Need further discussion ≻Clean grounding In Dec. 2018, after the start of commercial operation of Taishan-1

A LS detector uniformly at -50℃ has a lot of challenges
Normal 2-m SST

➤w/ 20-cm PU insulation instead vacuum interlayer

≻Heat leakage 337 W

