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Neutrino beam for precision physics

The next generation of short baseline experiments should rely on:

• a direct measurement of the fluxes

• a narrow band beam → energy known a priori from beam width

• a beam covering the region of interest from sub- to multi-GeV

ENUBET project

Goal: demonstrate the technical feasibility and physics performance of a neutrino beam where 

lepton production at large angles is monitored at single particle level exploiting the Ke3 decay.

Two aims:

• Design/simulate the layout of the hadronic beamline

• Build/test a demonstrator of the instrumented decay tunnel
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Recognized in the CERN 
Neutrino Platform as

ENUBET/NP06



A high precision narrow band  beam
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CHALLENGES:

The decay tunnel is a harsh environment:
• particle rates: > 200 kHz/cm2

• instrumented region: ~ 50 m
• backgrounds: pions from K+ decays  

→ need to veto 98-99 % of them
• significant spread in the initial direction

REQUIREMENTS:

e+ tagger:
• longitudinal sampling
• homogeneity 

→ integrated light-readout
• Separate e+, +,  (PID)

Photon veto:
• photon identification 

capabilities
• precise timing of the 

particles (< 1 ns)
• exploit 1 mip – 2 mip

separation



Expected doses – ENUBET lifetime
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The integrated fluence to achieve 1% of
statistical error on e CC depends on the position
of the calorimeter with respect to the axis of
secondary beam at the entrance of the decay
tunnel.

ENUBET @ 1 m distance (lifetime - integrated):
• non ionizing fluence: 1.8  1011 n/cm2 1-MeV eq.
• ionizing dose: 0.06 kGy



The Tagger/Photon Veto technology
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Compact shashlik calorimeter 
Ultra Compact Module(UCM): 

• longitudinal (4 X0) segmentation. 
• 3x3x1.5 cm3 Fe + 3x3x0.5 cm3 scint. modules 
• SiPM embedded in the bulk of the calorimeter 

Separate e+, +, 

Photon Veto Rings (t0 layer):

3 x 3 cm2 pads of plastic scintillator
readout by SiPM
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Photo Veto



UCM SiPM - FBK RGB - HD
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Factory Parameters:

- Active Area: 1 x 1 mm2 (match with WLS fiber  = 1 mm2)

- Cell pitch: < 25 m 

- Breakdown Voltage @TROOM:  28V

Tests:

- Exposure to fast neutrons @ Irradiation Test Facility of Laboratori Nazionali di Legnaro (LNL)

- Measure the response to MIP and eletrons @ CERN T9 beamline



Irradiation tests @ LNL

Van der Graaf accelerator (Vmax = 7 MV)

Protons on Beryllium target:   p (5 MeV) + 9Be  → n + X
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Be Target

protons

bunker

Irradiation point
Irradiated sample inside an experimental area: 
external shield of concrete inner layer of 
water as neutron moderator



Neutron Yeld assessment
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from S. Agosteo et al. 
Appl. Rad. Isot. 69 (2011) 1664 Expected fluxes on irradiated 

samples evaluated from:

• S. Agosteo et al. Appl. Rad. Isot. 
69 (2011) 1664

• real time monitoring of proton
current to the target (current
integrator)

• Neutron backscattering on the 
shielding estimated with FLUKA 
2011 → negligible contribution



Irradiated samples

3 PCB Boards - Each Board hosts:

• 9 SiPM – parallel connection

• Passive components

• Signal routing to front-end

• Readout through a decoupling capacitor
no amplification

SiPM tested: cell pitch 12, 15, 20 m

1 PCB Board equipped with:

• 1 SiPM – 12 m cell pitch

• Readout with Advansid amplifier
(ASD-EP-EB-N) removed during
exposure time
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Irradiation Procedure

• All PCB boards irradiated with:
• minimum dose: 1.8106 n/cm2;
• maximum dose: 1.71011 n/cm2;

• During irradiation SiPM are:
• not biased
• temperature monitored (two LM 35 sensors – Arduino One board)

• maximum increase + 10 °C w.r.t TEnv

• time to reach room temperature after irradiation: 15-30 min.

• After each irradiation run:
• I-V curve recorded (Keythley 485 Picoammeter);
• darkCurrent and p.e. sensitivity measured (Rohde & Schwarz RTO 1024 

oscilloscope).
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IV Curves
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FBK - RGB-HD sensors shows after irradiation: 
• minor changes in the breakdown voltage
• dark current increases by more than two orders of magnitude



Sensitivity to single photo electron

02/10/2019 12

Single SiPM PCB 12 m cell, 1 mm2

sensitivity lost at fluence >= 3109 n/cm2



TB @ CERN – T9 beamline

• Particle beam composition:
• Electrons;
• Muons; 
• Pions;

• Momentum selected in the range 1 -5 GeV → covering the whole ENUBET 
energy range;

SiPM after irradiation were stored @ 25 °C for three months
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Test beam setup
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Strip detectors used to select particles hitting the UCM front face (fiducial area 2x2 cm2) and crossing it.

Electrons selection:
• Signals required in both Cherenkov Couters;

MIP – like particle (muons and not interaction pions) selection:
• No signals in Cherenkov counters and signals in muon catchers;



UCM Under Test

2 UCMs equipped with both irradiated and not irradiated boards:

• Prototype 16B: 
• 5 iron slabs (3x3x1.5 cm3) interleaved with 

5 scintillator tiles (3x3x0.5 cm3) 
EJ-200 + WLS Kuraray Y11 

•  50 p.e. for a MIP crossing the unit  
(from lab. Test with C.R.)

• Prototype 17UA: 
• 5 iron slabs (3x3x1.5 cm3) interleaved with 

5  scintillator tiles (3x3x1.35 cm3) 
Uniplast Injeciton Molded +  WLS Kuraray Y11 

•  85 p.e. for a MIP crossing the unit 
(from lab. Test with C.R.)
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UCM 16B – Not Irradiated PCB
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• SiPM overvoltage:  9 V

• MIP signal is separated from dark noise
• it can be employed to monitor changes in

UCM response over time and equalize the
response

• Electrons well separated from MIP particles

All triggered events
Electrons
MIP + e-



UCM 16B Irradiated board
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All triggered events
Electrons
MIP + e-

• SiPM overvoltage:  9 V

• MIP is NOT separated from dark noise
after irradiation

• Electrons separated from dark noise



UCM 17UA Irradiated PCB
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All triggered events
Electrons
MIP + e-

• SiPM overvoltage:  9 V

• MIP is still visible after irradiation

• Electrons separated from dark noise



Phothon Veto SiPM – SenSL 30020 J
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Factory Parameters:

- Active Area: 3 x 3 mm2 (match with 2 WLS fibers  = 1 mm2)

- Cell pitch:  20 m 

- Breakdown Voltage @TROOM:  24V

Tests:

- SiPM characterization with laser pulses (Picosecond Laser  = 405 nm)

- Measure the response to MIP an exploit 1-2 mip separation @ CERN T9 beamline



Laser test Vovervoltage = +3 V
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Peak Amplitude (V)



TB @ CERN – T9 beamline
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- p →n 0 (→  )

Material:
• Scintillator: EJ 204 3x3x0.5 cm3

• TiO2 painting: EJ / 510 reflective 
coating

• 2 WLS fibers – BCF 92 – 40 cm 
• Optical Glue: EJ – 500 

Results:
• Collection efficiency: > 95%
• Time resolution: 400 ps
• 1 mip / 2 mip separation

Custom Optical 
Connector



UCM modified - photon veto design 
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Profiting of t0 design new UCM configuration is 
under investigation:

• WLS fibers from scintillator sides are bundled 
to single SiPM reading 10 fibers (1 UVC)

• Fibers are connected with a custom optical 
connector;

• 40 cm WLS fibers allow for
• reducing neutron flux impinging on SiPM

MIP signal preserverd for entire life-time 
of ENUBET

• better accessibility (replacement is 
possible)

• reproducibility in WLS-SiPM connection;



Neutron reduction lateral readout

• 30 cm of borathed polyethylene in front 
of SiPM

• FLUKA Simulation (proton 400 GeV)

• Reduction Factor 18 averaging over the 
spectrum
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PRELIMINARY



Conclusions (1/2)

ENUBET aims:

• at monitoring lepton production at large angles (single particle level).

CHALLENGE

the decay tunnel is a harsh environment (particle rate > 200 kHz /cm2) 
→ lifetime integrate non ionizing fluence 1.8  1011 n/cm2 1-MeV eq.

FBK – SiPM + UCM integration:
• Irradiation tests @ LNL → RGB-HD sensors shows after irradiation: 

• minor changes in the breakdown voltage
• dark Current increases by more than two orders of magnitude

• Test @ T9 – CERN beamline:
• MIP is NOT separated from dark noise after irradiation for standard UCM

→ it can be preserved by increasing the scintillator thickness
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Conclusions (2/2)

Photon Veto:

• SiPM SenSL 30020J → t  70 ps with laser   400 nm

• Test @ T9 – CERN beamline  
→ t  400 ps (matching requirement < 1 ns) 
→ 1 mip / 2 mip separation (matching requirement e+ / e-e+ separation)

UCM modified with t0 – like design allow for:
• reducing neutron flux impinging on SiPM → MIP signal preserved for 

entire life-time of ENUBET
• better accessibility (replacement is possible)
• reproducibility in WLS-SiPM connection
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F. Acerbi et al., Irradiation and performance of RGB-HD Silicon Photomultipliers for calorimetric applications, JINST 14 (20 19) P02029



Backup slides
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Standard UCM 
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The tagger demonstrator

• Length 3m → allow the 
containment of shallow 
angle particles in realistic 
conditions

• Fraction of 

• Due by 2021
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