

Istituto Nazionale di Fisica Nucleare

SiPMs for the Photon Detection System of DUNE

SiPM workshop: from fundamental research to industrial applications

Andrea Falcone

Università di Milano Bicocca

02 Oct 2019

Deep Underground Neutrino Exp

- ✓ Near + Far detectors.
- Far detector: 4 LArTPCs, 10 kton fiducial volume each, 1.5 km underground.
- CP violation, mass hierarchy, proton decay, SN neutrinos.

LAr TPC

ANDREA FALCONE - 02 OCT 2019

DUNE Far Detector

- ✓ Active volume: **12m x 14m x 58m**.
- ✓ 150 Anode Plane Assemblies, 6m high x 2.3m wide. Wrapped wires, 2 Ind and 1 Coll planes.
- ✓ PDS between APA planes.
- ✓ 200 Cathode Plane Assemblies. Cathode at -180 kV for 3.6m drift.

Light in DUNE

- ✓ t0 (and so third coordinate) of the event.
- ✓ Trigger for no beam events:
 - SN neutrino bursts ($v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$, with 5 20 MeV signal);
 - proton decay (golden channel $p \rightarrow K^+ v$).
- ✓ Alternative method for calorimetry.
- ✓ Help for Machine Learning technique.

X - ARAPUCA

✓ 48 SiPM actively ganged (8 x 6 SiPMs) will read a Supercell, i.e. a channel of electronics.

✓ Test of the ARAPUCA concept in ProtoDUNE SP

- ✓ 1/25 of full DUNE far detector
- ✓ 6 full-sized drift cells (150 in far detector)
- ✓ First test of ARAPUCA in real experiment

- ✓ Test of the ARAPUCA concept in ProtoDUNE SP.
- Identification of the production technology in collaboration with vendors and developers.

- ✓ Test of the ARAPUCA concept in ProtoDUNE SP.
- Identification of the production technology in collaboration with vendors and developers.
- ✓ Optimization of cryogenic amplifier.

- ✓ Test of the ARAPUCA concept in ProtoDUNE SP.
- Identification of the production technology in collaboration with vendors and developers.
- ✓ Optimization of cryogenic amplifier.
- ✓ Preparation of ProtoDUNE Run II.

SiPM for DUNE

- SiPM to be used in DUNE should have:
- ✓ long term cryoreliability;
- ✓ breakdown voltage < 50 V;
- ✓ PDE at 430 nm (87K) > 35% at nominal overvoltage;
- cross-talk and afterpulse < 15% at nominal overvoltage;</p>
- \checkmark recovery time of a few µs;
- ✓ dynamic range: 1-2000 p.e. per ch (48 SiPM);
- ✓ dark count rate small compared with background from ³⁹Ar contamination.

Focus on my talk

- Characterization of tiles of 6 FBK NUV-HD-SF 4x4 mm² as the first step in optimization and development program.
- ✓ SiPM read by mean of a 2-stage cold amplifier BJT THS4121, with a noise of 0.4 nV/√Hz at T=77 K.

Thermal cycle

✓ Thermal tests: 38 SiPMs OK (>20 cycles for all of them).

Breakdown voltage

- ✓ Breakdown voltage at 77 K: 21 ± 0.1 V.
- ✓ Max overvoltage: 21- 31 V (+10 V).

Quanching resistance

- \checkmark At 77K, the quenching resistances follow a Gaussian distribution, peaked at 5.9 M Ω .
- \checkmark At room temperature it is between 0.87 and 1.1 MQ.

Gain

DCR and afterpulse

✓ Afterpulse(+delayed cross talk) <10% at +4 V overvoltage

S/N vs Ganging

OV	Number of SiPM						
	1	2	4	6	6x2	6x3	6x4
3 OV	14	14	12	12	10	7	7
4 OV	17	17	14	14	12	8	7
5 OV	19	19	16	16	12	9	/

Toward Run II of ProtoDUNE

- ✓ ProtoDUNE SP: beam data (10/10/2018 → 12/11/2018 data taking period) and data from cosmic runs (12/11/2018 → end of 2019).
- ✓ Test and characterization of the various detector subsystems for DUNE.
- Choice of ARAPUCA configuration as best one for DUNE.
- In Run II (start in Summer 2020) we'll test the final design of X-ARAPUCA and of the whole DUNE PDS.

The DUNE PDS in INFN

- The DUNE PDS activities of the INFN groups in DUNE have just started but... we are ramping up quickly!
- Development and characterization of photosensors (Bologna, Genova, Milano, Milano Bicocca).

- Development of the cold amplifier optimized for the DUNE sensors (Bologna, LNS, Milano, Milano Bicocca).
- Cryogenic test facility for the SiPMs and the X-Arapuca (Bologna, Ferrara, Genova, Milano Bicocca).

Conclusion

- ✓ The DUNE Photon Detection system is based on extensive use of cryogenic SiPMs.
- We are optimizing the sensor technologies for the needs of DUNE in close collaboration with vendors and developers.
- ✓ In my talk I focused on NUV-HD-SF sensors developed by FBK.
- ✓ These sensors show excellent performance (paper in preparation) in term of :
 - reliability against thermal stresses and operation of cryogenic environment;
 - single p.e. sensitivity in single sensor (17 at +4 OV) and ganging mode (7 at +4 OV);
 - DCR and correlated noise;
- Further improvement can be achieved employing the FBK NUV-HD-Cryo technology (in progress).
- INFN groups are contributing to the optimization process and the Run II of ProtoDUNE in a substantial manner: a lot of new results coming soon!

Thanks!