

Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler

<u>A. Gola</u>, F. Acerbi, A. Altamura, G. Borghi, M. Capasso, A. Ficorella, A. Mazzi, S. Merzi, G. Paternoster, V. Regazzoni, N. Zorzi.

gola@fbk.eu

October 4, 2019

Fondazione Bruno Kessler

Detector-grade clean-room, 6 inches, class 10 and 100

FBK is typically interested in R&D activities, and

Industrialization is carried out relying on partners.

Silicon Photomultipliers account for a significant portion of the detectors fabricated here.

Publicly funded research center

450 researches working in different fields

LFOUNDRY Solutions for great visions

October 4, 2019

Alberto Gola - Bari SiPM workshop 2019

collaborations.

FBK SiPM technology roadmap

Near-UV technology: NUV-HD

NUV-HD: Fill Factor

SPAD Pitch	15 µm	20 µm	25 µm	30 µm	35 µm	40 µm
Fill Factor (%)	55	66	73	77	81	83
SPAD/mm ²	4444	2500	1600	1111	816	625
High Dynamic Range, Fast recovery time High PDE						
October 4, 2019 Alberto Gola - Bari SiPM workshop 2019						

Photon detection efficiency

Gola, A et al. (2019). "NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler." *Sensors*, *19*(2), 308.

SiPM noise: Dark Count Rate and Optical Crosstalk

Dark Count Rate

Optical Crosstalk (Correlated Noise)

NUV-HD Improvements

October 4, 2019

NUV-HD-LowCT

Applications such as CTA

Cremitor Information

Light absorbing material was inserted inside trenches, between adjacent microcells

SEM image of trenches, separating adjacent microcells.

Metal in trenches is under development..

October 4, 2019

NUV-HD-Cryo and VUV–HD

See A. Razeto and I. Kochanek presentations

See F. Retière and M. Capasso presentations

DARKSIDE

Radiation Damage of SiPMs

Radiation damage in SiPMs is currently a hot research topic in the SiPM field.

• Small-cell SiPMs fabricated at FBK (< 20 um cell size) with optimized electric field provide mitigation of typical effects of radiation damage.

Main effects of radiation damage in SiPMs	Mitigation of the effects of rad. damage with HD-SiPM technology:
Increase of the primary noise (DCR).	E field engineering allows a faster reduction of DCR with cooling.
Increased afterpulsing (increased number of traps).	Low gain and low E field reduce afterpulsing (for a given number of traps).
PDE loss due to cells busy triggering dark counts.	Many, smaller cells with faster recharge are less sensitive to the problem.
Increased power consumption due to higher DCR.	Lower gain allows less current (for a given value of DCR) + Low V _{BD} .

NUV-HD-LF with small cells

Single Photon Time Resolution

October 4, 2019

NUV SPAD – SPTR

ACTIVE AREA LAYOUT	Diameter / side (µm)	Metallization
circular	20	Covered edges (A) with metal
circular	20	uncovered edges (B)
square	50	uncovered edges

Worse charge collection at SPAD edges Signal pick-up is also very important

<u>Covering the SPAD edges with</u> metal <u>reduces the SPTR to 20 ps</u>

BRUNO KESSLER

NUV SiPM – SPTR

Larger active are \rightarrow larger SiPM capacitance \rightarrow more LP filtering \rightarrow smaller signal

Bigger effect of the electronic noise on SPTR

High-frequency SiPM readout

Alberto Gola - Bari SiPM workshop 2019

resolution limits in TOF-PET"

HF SiPM readout – SPTR and CRT with LSO

Significant reduction of SPTR with improved electronics (but high power consumption) Work carried out in collaboration with S. Gundacker (P. Lecoq)

Improvement of SPTR is, possibly, even more important for BGO readout:

- Timing is improved with Cherenkov light detection

RGB-HD technology

Tumulatis, et. al., "Improvement of response time in GAGG:Ce scintillation crystals by magnesium Codoping" DOI: 10.1063/1.5064434

- RGB-HD technology: optimized for green wavelength detection
- Good for CsI and GAGG scintillators

CTR with GAGG: Ce,Mg,Ti: ~170ps FWHM

Gamma-ray spectroscopy with NUV-HD SiPMs

LaBr₃ readout by SiPMs

120 channels

SiPM: basic unit is NUV-HD SiPM (FBK)

- 6 × 6 mm² active area
- 30 × 30 µm² microcells
- Peak efficiency of 45% at 380 nm
- DCR < 100 kcps/mm²
- ASIC readout

LaBr₃ crystals

LaBr₃ spectroscopy results

3" LaBr₃:Ce 3" LaBr₃:Ce,Sr²⁺

Multi-source (¹³³Ba and ¹³⁷Cs sources)

No collimator

Measured at Politecnico di Milano

Montagnani et al., 2019, **Spectroscopic performance of a Sr co-doped 3" LaBr3 scintillator read by a SiPM array**, Nuclear Instruments and Methods in Physics Research Section A

October 4, 2019

Thank you!

For any question: gola@fbk.eu

Thanks also to all the members of the team working on custom SiPM technology at FBK:

Fabio Acerbi Anna Rita Altamura Giacomo Borghi Massimo Capasso Andrea Ficorella Nicola Furlan Alberto Mazzi Stefano Merzi Vladimir Mozharov Giovanni Paternoster Veronica Regazzoni Nicola Zorzi

Linearly-Graded SiPM

LG-SiPM

October 4, 2019

Linearly-Graded SiPM – LG-SiPM

LG-SiPM

- Linearly-Graded Silicon Photomultiplier
 - A type of position-sensitive silicon photomultipliers (PS-SiPM).
 - 4 cathode signals (position information) and 1 anode signal.
- The currents of the 4 cathode signals change linearly according to the position of the fired microcell.
- Position

$$x = \frac{L - R}{L + R} \qquad y = \frac{T - B}{T + B}$$

• Energy

$$E = L + R + T + B$$

October 4, 2019

LG-SiPM

2 x 2 array of LG-SiPMs

- 2 x 2 array of 7.75 x 7.75 mm² LG-SiPMs
- Microcell size: 20 μm (square cells).
- Gap between LG-SiPMs is 0.2 mm.
- Application: small-animal PET

1.5 x 1.5 cm² 4 readout channels only

LYSO array 30 x 30 array of 0.445 x 0.445 x 20 mm³ Pitch size is 0.5 mm.

October 4, 2019