GR or not GR? Testing General Relativity through gravitational wave observations

Giulia Pagano

Università di Pisa, INFN Pisa giulia.pagano@pi.infn.it

Università di Pisa

January 17, 2019 - Genova, Italy

Outlook

Introduction to gravitational waves

- GWs in general relativity
- Detection and data analysis

Tests of General Relativity

- Consistency tests
 - Compatibility of residuals with noise
 - IMR consistency test
 - Ringdown test
- Production effects
 - Waveform expansion
 - Polarisation tests
- Propagation effects
 - Modified dispersion relation
 - Higher dimesions

Conclusions and perspectives

Giulia Pagano – Università di Pisa, INFN Pisa

Introduction to gravitational waves

Getty images

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

1

Phys. Rev. Lett., 119, 141101 (2017)

1

Giulia Pagano – Università di Pisa, INFN Pisa

GR

Prediction

- How to test for the presence of a **GR** waveform in the data?
- How to test for **violations**?

$$d(t) - h(t, \vec{\theta}) = n(t)$$

- How to test for the presence of a $\boldsymbol{G}\boldsymbol{R}$ waveform in the data?
- How to test for **violations**?

$$d(t) - h(t, \vec{\theta}) = n(t)$$

- How to test for the presence of a **GR** waveform in the data?
- How to test for **violations**?

$$d(t) - h(t, \vec{\theta}) = n(t)$$

- How to test for the presence of a $\ensuremath{\textbf{GR}}$ waveform in the data?
- How to test for **violations**?

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} | HI)}{p(d | HI)}$$

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} \ dHI) = p(\vec{\theta} \ |HI) \cdot \frac{p(d|\vec{\theta} \ HI)}{p(d|HI)}$$

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} HI)}{p(d | HI)}$$

The data

 $d_{H}(t), d_{L}(t), d_{V}(t)$

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} HI)}{p(d | HI)}$$

The data

 $d_{H}(t), d_{L}(t), d_{V}(t)$

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

Tests of General Relativity

Distribution of the residuals

- Subtract the **most probable GR waveform** from the data
- Analyse the residuals **only** looking for **coherence** (BayesWave)

Bayes' theorem

$$p(H_1|DI) = p(H_1|I) \frac{p(D|H_1I)}{p(D|I)}$$
$$p(H_2|DI) = p(H_2|I) \frac{p(D|H_2I)}{p(D|I)}$$

Odds ratio and Bayes factor $O_{1,2} \equiv \frac{p(H_1|I)}{p(H_2|I)} \frac{p(D|H_1I)}{p(D|H_2I)}$ Giulia Pagano – Università di Pisa, INFN Pisa

GW150914

Distribution of the residuals

- Subtract the most probable GR waveform from the data
- Analyse the residuals **only** looking for **coherence** (BayesWave)

Bayes' theorem

$$p(H_1|DI) = p(H_1|I) \frac{p(D|H_1I)}{p(D|I)}$$
$$p(H_2|DI) = p(H_2|I) \frac{p(D|H_2I)}{p(D|I)}$$

Odds ratio and Bayes factor $O_{1,2} \equiv \frac{p(H_1|I)}{p(H_2|I)} \frac{p(D|H_1I)}{p(D|H_2I)}$ Giulia Pagano – Università di Pisa, INFN Pisa

GW150914

Phys. Rev. Lett. 116, 221101 (2016) 6

Distribution of the residuals

- Subtract the most probable GR waveform from the data
- Analyse the residuals **only** looking for **coherence** (BayesWave)

Bayes' theorem

$$p(H_1|DI) = p(H_1|I) \frac{p(D|H_1I)}{p(D|I)}$$
$$p(H_2|DI) = p(H_2|I) \frac{p(D|H_2I)}{p(D|I)}$$

Odds ratio and Bayes factor $O_{1,2} \equiv \frac{p(H_1|I)}{p(H_2|I)} \frac{p(D|H_1I)}{p(D|H_2I)}$ Giulia Pagano – Università di Pisa, INFN Pisa

GW150914

Phys. Rev. Lett. 116, 221101 (2016) 6

Inspiral-Merger-Ringdown (IMR)

- Test that the entire coalescence does not deviate from GR predictions

• Post Newtonian expansion (PN) of the phase in $v/c \sim f^{1/3}$ up to $(v/c)^7$

Phys. Rev. Lett. 116, 221101 (2016)

Inspiral-Merger-Ringdown (IMR)

- Test that the entire coalescence does not deviate from GR predictions

- **Post Newtonian** expansion (**PN**) of the phase in $v/c \sim f^{1/3}$ up to $(v/c)^7$
- Numerical relativity (NR) regime

Phys. Rev. Lett. 116, 221101 (2016)

Inspiral-Merger-Ringdown (IMR)

- Test that the entire coalescence does not deviate from GR predictions

- **Post Newtonian** expansion (**PN**) of the phase in $v/c \sim f^{1/3}$ up to $(v/c)^7$
- Numerical relativity (NR) regime
- Perturbation theory

Phys. Rev. Lett. 116, 221101 (2016)

Inspiral-Merger-Ringdown (IMR)

• Test that the entire coalescence does not deviate from GR predictions

Phys. Rev. Lett. 116, 221101 (2016)

- Infer m₁, m₂ and a₁, a₂from the low frequency and the high frequency part of the waveform (Kerr ISCO cutoff)
- Obtain two independent estimates for M_f, a_f through NR fits

BUT

- $GR\ {\rm predicts}\ {\rm a}\ {\rm unique}\ {\rm solution}$
- Estimates must be compatible

Inspiral-Merger-Ringdown (IMR)

• Test that the entire coalescence does not deviate from GR predictions

Phys. Rev. Lett. 116, 221101 (2016)

Ringdown test

• Superposition of **damped sinusoids** when the **linear regime** takes over after the merger

Phys. Rev. Lett. 116, 221101 (2016)

l = *m* = 2 (spherical harmonics indices) *n* = 0
 (overtone) mode is the least damped

$$h(t \ge t_0) = A e^{-(t-t_0)/\tau} \cos \left[2\pi f_0 (t-t_0) + \phi_0\right]$$

Ringdown test

• Superposition of **damped sinusoids** when the **linear regime** takes over after the merger

Phys. Rev. Lett. 116, 221101 (2016)

l = *m* = 2 (spherical harmonics indices) *n* = 0
 (overtone) mode is the least damped

$$h(t \ge t_0) = A e^{-(t-t_0)/\tau} \cos \left[2\pi f_0 (t-t_0) + \phi_0\right]$$

predicted by the remnant's mass and spin

Ringdown test

• Superposition of **damped sinusoids** when the **linear regime** takes over after the merger

Phys. Rev. Lett. 116, 221101 (2016)

l = *m* = 2 (spherical harmonics indices) *n* = 0
 (overtone) mode is the least damped

$$h(t \ge t_0) = A e^{-(t-t_0)/\tau} \cos \left[2\pi f_0 (t-t_0) + \phi_0\right]$$

- Measure its **frequency** and **damping time**
- Compare with the GR prediction given by
 M_f, a_f inferred from IMR

Ringdown test

Phys. Rev. Lett. 116, 221101 (2016)

Ringdown test

Production effects

Test alternative models which change the waveform at its generation (source)

Waveform expansion

- Consider an analytical, **parametric waveform**
- Treat the **GR predicted coefficients as free parameters**
- Measure and compare with GR predictions

Production effects

Test alternative models which change the waveform at its generation (source)

Waveform expansion

- Consider an analytical, **parametric waveform**
- Treat the **GR predicted coefficients as free parameters**
- Measure and compare with GR predictions

<u>Post Newtonian (PN) expansion of the inspiral phase + effective terms</u>

- Expansion in $v/c \sim f^{1/3}$, analytically known up to $(v/c)^7$ for the inspiral phase
- Effective waveform for the other stages, calibrated on NR/EOB

$$\psi_{3.5}(f) = \sum_{i=0}^{7} \varphi_i f^{(i-5)/3} + \varphi_{5l} \ln(f) + \varphi_{7l} f^{1/3} \ln(f) + eff.$$

 $\varphi_i(m_1, m_2, a_1, a_2)$

Waveform expansion

- Add a **fractional deviation** and infer its value from **data**
- $\varphi_i \longrightarrow \varphi_i (1 + \delta \hat{\varphi}_i)$

GW150914

Phys. Rev. Lett. 116, 221101 (2016)

Production effects

Waveform expansion

GW150914

Phys. Rev. Lett. 116, 221101 (2016)

Giulia Pagano – Università di Pisa, INFN Pisa

Production effects

Waveform expansion

Giulia Pagano – Università di Pisa, INFN Pisa

Phys. Rev. X. 4 041015 (2016)

Polarisation tests

$h(t,\vec{\theta}) = F^A(\hat{\Omega}) \cdot h_A(t,\vec{\theta})$

- The polarisation content enters the **projection into the detector**
- Need **more than 3 detectors** to test all the combinations

Polarisation tests

Sensitivity of the **LIGO/Virgo network**

5) (00001

Isi&Weinstein, arXiv:1710.03794v1

Polarisation tests

Polarisations of a **generic theory** of gravity

	T/V	T/S
Bayes factor	200	1000

NO vector/scalar polarisations in GW170814

Modified dispersion relation

- Consider a massive graviton: $E^2 = p^2 c^2 + m_g^2 c^4$ (Will, 2014)
- The group velocity gets modified by $v_g^2/c^2 = 1 h^2 c^2/(\lambda_g^2 E^2)$, $\lambda_g = h/(m_g c)$
- Which adds a 1PN term to the phase of the waveform: $\Phi_m = -(\pi Dc)/[\lambda_q^2(1+z)f]$

GW150914

$$\lambda_g > 10^{13} km$$
$$m_g < 1.2 \cdot 10^{-22} eV/c^2$$

GW170817

$$-3 \times 10^{-15} \leqslant \frac{\Delta v}{v_{\rm EM}} \leqslant +7 \times 10^{-16}$$

Giulia Pagano – Università di Pisa, INFN Pisa

More generally

- $E^2 = p^2 c^2 + A p^\alpha c^\alpha, \, \alpha \ge 0$
- $v_g/c \simeq 1 + (\alpha 1)AE^{\alpha 2}/2$

Massive graviton	Multifractal spacetime	Doubly special relativity	Extra dimensions
$\alpha = 0, A > 0$	lpha=2.5	$\alpha = 3$	lpha = 4

- Weeker consraints than photon/neutrino observations
- Some theories predict violations in just one sector
- First bound in the gravitational sector

Phys. Rev. Lett. 118, 221101 (2017)

Higher dimensions

• A **leakage** of GWs in **higher dimensions** cause them to travel for a **greater distance** w.r.t. electromagnetic waves

$$h \propto \frac{1}{d_L^{\rm GW}} = \frac{1}{d_L^{\rm EM}} \left[1 + \left(\frac{d_L^{\rm EM}}{R_c}\right)^n \right]^{-(D-4)/(2n)}$$

Higher dimensions

• A **leakage** of GWs in **higher dimensions** cause them to travel for a **greater distance** w.r.t. electromagnetic waves

$$h \propto \frac{1}{d_L^{\text{GW}}} = \frac{1}{d_L^{\text{EM}}} \left[1 + \left(\frac{d_L^{\text{EM}}}{R_c}\right)^n \right]^{-(D-4)/(2n)}$$

Higher dimensions

• A **leakage** of GWs in **higher dimensions** cause them to travel for a **greater distance** w.r.t. electromagnetic waves

GW170817: a binary neutron star signal

Abbott et al., arXiv 1811.00364v2

Giulia Pagano – Università di Pisa, INFN Pisa

Conclusions and perspectives

Conclusions and perspectives

- General Relativity tested in the strong field, non linear regime thanks to BBHs and BNSs
- Generation and consistency of the signal as expected from Einstein's theory
 - The **power** accumulates as predicted (**residuals** compatible with **noise**)
 - Consistency of the whole IMR waveform
 - **Ringdown** regime **consistent** with GR for BBHs
 - Ony tensor degrees of freedom
- Propagation of gravitational waves as expected. For now compatible with:
 - Massless graviton
 - Light speed propagation
 - 4 dimensions

Conclusions and perspectives

....as many more detections are expected in the upcoming months

- As **statistics** accumulates, **posteriors** will be **combined** and **higher precision** will be reached in the tests presented
- **Higher SNR** signals will allow for more **refined tests** (multimodal ringdown tests, spin interactions, polarisations etc.)

```
• ?
```

Far future

- Possible detection of a **stochastic background**
 - The **cosmological background** is a window on **Planck scale energies**

and on the early universe, where an extended theory of gravity could come into play