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Once upon a time...



● Motivation for a precise W mass 
measurement

● The W mass measurement at the 
LHC

● Machine Learning approaches for 
the measurement of the hadronic 
recoil

Outline

Machine learning approaches:

● New experimental definition of 
the recoil based on a 
semi-parametric regression 

● Machine learning approach for 
the calibration of the recoil
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Motivation for a 
precise 

measurement 
of the mass of 
the W boson
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The weak interaction in the standard model 4

The weak interaction:
● Responsible for the β-decay
● Fermi theory at low energy
● Electroweak theory at high energy

○ Carried by the 𝛄, Z, and W bosons

The W boson:
● Electromagnetic charged
● mass ~ 80 GeV
● Interacts with

○ Quarks q-q’
○ lepton-neutrino



MW values: theory vs experiments 5

MW is an interesting case

Average of exp measurements 
(without ATLAS): 
➔ MW

exp = 80.385 ± 0.015 GeV

Theory prediction: 
➔ MW

theo = 80.362 ± 0.008 GeV

The standard model is predictive given:

● 3 quantities at tree level
● 6 quantities at one loop

Collective fit of all measurements:

➢ Test of the theory
➢ Inconsistency may unveil new physics 

through quantum effects 

Strong motivation to improve the experimental precision!!!



LHC collected a lot of W bosons already! 6

Measuring MW with precision ~ 10-4 needs

● Huge sample of W decays
● Control systematic uncertainties

The Large Hadron Collider (LHC):

➢ Proton proton collisions @13 TeV
➢ W bosons copiously produced
➢ The CMS experiments collected 400M  

W boson decays during 2016 only

The challenge is now given by the systematic uncertainties!!!



The W mass 
measurement 

at the LHC

7



W boson production at the LHC 8

Main process:
➢ qq’ ⟶ W

Main decay channel 
➢ W ⟶ ℓ𝜈 
➢ Small background

Other particles are produced in the collision:
➔ Collectively named recoil

Processes responsible for that:
➔ Hadronization of ISR
➔ Underlying event
➔ NLO terms



9How an event looks



Extract the mass: template fit 10

The invariant mass cannot be reconstructed
➔ Hard to measure the neutrino momentum on the 

beam axis

Need for a template fit
➔ Consider an experimental variable correlated with 

the mass of the W boson
➔ Model the expected distribution for different values 

of mW 
➔ Maximum likelihood fit point by point

Uncertainties in the W production model
➔ Systematic uncertainties



pT-W is one of the biggest uncertainties 11

➔ pT-W is hard to predict:
◆ Typical momentum of 5 GeV, 

non perturbative QCD
◆ Theory uncertainties ~ 10%

➔ One of the dominant 
uncertainties in the analysis



How to defeat the uncertainty on pT-W? 12

➔ Ask to theorists: improve the calculations and simulations
◆ People are working, but it’s hard

➔ Use experimental variables as less dependent as possible on pT-W
◆ Let’s try to build it!

From the kinematics of the final state: 
Recoil-momentum = W momentum

● Impossible to measure the longitudinal part
● Momentum conservation on the transverse 

plane still helpful
● Perfect measurement � pT recoil = pT-W 



The transverse mass 13

➢ The invariant mass is independent of pT-W
○ But I cannot measure the longitudinal momentum of the neutrino

➢ The transverse mass
○ Invariant mass on the transverse plane
○ Less sensitive to pT-W, but it depends on the resolution of the recoil measurement

Better measurement of the hadronic recoil
=

The transverse mass is less dependent on 
pT-W

=
Smaller systematic uncertainty



A new recoil 
definition

A semi parametric regression 
implemented with deep neural 

networks
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Experimental definition of the recoil 15

➔ Experimentally it is a set of particles

➔ For what concerns the transverse mass we need pT and Φ

➔ The recoil definition is the abstract function that maps the experimentally 

measured particles to pT and Φ

● Yellow track: muon
● All the other particles experimentally reconstructed: 

recoil



Definitions under study 16

Track recoil (TK):
● Association of the charged tracks to the primary vertex
● Vectorial sum of the momenta of these tracks
● Needs to be calibrated to the proper scale

Particle Flow recoil (PF):
● Vectorial sum of the momenta of all reconstructed particles (but 

the lepton from the W decay)
● For pileup vertices the sum is zero on average, for the primary 

vertex is = pT-W
● Needs to be calibrated to the proper scale

The new idea (MNPK):
● Define some experimental features describing the recoil: eg. 

number of charged particles, leading particle momentum, etc.
● Combine these features to obtain a better measurement



Let’s be formal

x: Experimental observables of the recoil (n features)

y: True value of the recoil (magnitude and angle, 2D)

Experimental definition: ŷ = f(x)

Eg: track recoil

● x =  { h
TK

x, h
TK

y}
● y = { h

true
x, h

true
y}

● ŷ = I(x) = x

Vectorial sum of all particles 
from the primary vertex

What if I have a longer series of x?
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p(y|x) is the largest information I can get 18

The 
correlation 
between x 

and y 
defines a 
PDF on an 
event by 

event basis

Finite correlation I get a PDF 
point estimate

P(h)

δ(h-h
vero

) Perfect 
measurement of 

the recoil

Complete 
correlation 
E.g.: h∈x 

Zero correlation
No information 

added



How to estimate p(y|x)? (for each value of x)

● Model the distribution 
p(y|x) = p(y|x ; 𝜶)

● Assume a functional 
form for 𝜶(x) 

● Fit 𝜶(x) with the 
simulation: for each 
event x and y are know

● In the data x is measured 
predict the pdf of y 

19

Model with a 
function with an 

explicit form
p(y; 𝜶)

x

Ev
en

t

𝜶(x)Functional 
form

p(y|x)

From the simulation, using a semi-parametric regression (it’s machine learning!)

Fit: parameters of 𝜶(x) optimised 
in order to reproduce the 

simulation



Eg: the least squares fit

● Training set: {xi, yi}i=1,..,N
● Test set: {xi}i=1,..,M
● Assume p(y|x) ~ N(𝝁(x), 𝛔2=1)
● Model 𝝁(x) = 𝝁(x; a)

○ Eg: polynomial with coefficient a
● Compute maximum likelihood 

○ Or the negative-log-likelihood 
(sometimes called 𝛘2)

○ Find the values of a that minimises it
● Use 𝝁(x; a) to predict p(y|xi) in the test set

Picture credit: Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien Géron
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Eg: p(y|x) gaussian with non constant 𝛔

● Training set: {xi, yi}i=1,..,N
● Test set: {xi}i=1,..,M
● Assume p(y|x) ~ N(𝝁(x), 𝛔2(x))
● Model 𝝁(x) = 𝝁(x; a), 𝛔2(x) = 𝛔2(x; b)

○ Eg: polynomial with coefficient a, b
● Compute maximum likelihood 

○ Find the values of a and b that 
minimises it

● Use 𝝁(x; a) and 𝛔2(x; b) to predict p(y|xi) in 
the test set

𝝁(x)

𝛔(x)

21
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Need for an analytic function that models p(y|x)

Our case
Distributions in a bin of finite width

● Easier using correction 
coefficients

● Easier with 2 one-dim functions
○ One for each component
○ Fewer parameters, easier 

to converge
○ neglect correlation

●  Effectively correcting TK recoil



Need for a very versatile function: deep neural networks (DNN)

Arbitrarily non-linear functions:
● Built from small units called neurons, organised in several layers
● It can be proved that, as long as enough neurons and layers are provided, a 

DNN can approximate whatever non-linear function
● Easy to compute derivatives (chain rule)
● Easy to optimise O(1000-10000) parameters at the same time
●
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Does it work (converge)? 24

I should check the convergence in each corner of the feature space
Large feature space ⇒ Check convergence globally

Example with the Gaussian slide 22 

Obtain the PDF of y summing up the predicted PDFs

x (features) Regression
Predict the PDF 

in one event

=
+ +

+ + ...



Sum of pdfs: our case 25



Estimators 26
Ev

en
t f

ea
tu

re
s 

x

Regression

Correction coefficients Recoil pdf Point estimate



Which definition is better?

Not easy a priori: the recoil is a 2D object, and the resolution is hard to define.

Need to evaluate the uncertainties on the final fit!

Resolution 
plot in two 
different 
frames

Hard to use 
as a figure of 
merit
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Effect on the transverse mass 28

Distribution used for the fit Distribution of the resolution

It does not tell too much 
unfortunately… probably related 

to the statistical uncertainty
Hard to tell which one is better...



Evaluate the 
systematic 

uncertainties

29



Need to evaluate systematic uncertainties

Better measurement of the recoil:

➔ Expect a smaller uncertainty related to pT-W

...But…

More information used in the transverse mass:

➔ Larger uncertainty due to the modelling of these variables
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Factorisation of the systematic uncertainties 31

The transverse mass

depends only on
● Lepton pT 
● Recoil pT 
● Relative angle

Lepton and recoil are correlated
➔ The lepton comes from the W decay
➔ Recoil momentum = W momentum

Experimental uncertainties are uncorrelated
How to decorrelate the theory ones?

Muon and recoil are conditionally independent given the W kinematics



Factorisation of the systematic uncertainties 32

Jacobian of MT
2

lepton pdf given 
W kinematics

recoil pdf given 
W kinematics

pdf of W 
kinematics

W kinematics

Once fixed the W kinematics (z), muon and recoil are independent

For our purposes W kinematics is just pT and pL



Evaluate the size of the systematic uncertainties 33

Convert a discrepancy data/MC to a bias on MW

W Monte Carlo

First copy:
pseudo-data

Second copy:
template

Template with 
re-weighing the 

mass

Pseudo-data    
with discrepancy

Template fit

Advantages:

➔ Isolate the statistical and the other systematic uncertainties
➔ The position of the minimum is the expected bias
➔ The width of the parabola is the expected statistical uncertainties
➔ The uncertainty on the estimate of the bias can be evaluated with bootstrap



Which definition is the best? 34

Effect of discrepancies in fW(z)

Add discrepancies between data and simulation in 
the pT-W spectrum
➔ ~ uncertainty on the theory prediction

Likelihood scan for different 
value of the discrepancy:
systematic uncertainty

=
Bias for unit of discrepancy



Which definition is the best? 35

CMS last public result

The new definition

Almost a factor 3 
improvement in the 

pT-W systematic 
uncertainty!



Recoil 
calibration

N-dimensional k-conditional 
quantile morphing,

based on Boosted Decision 
Trees

36



Recoil modeling 37

Distribution of the measured recoil, once fixed the true value of recoil momentum

Recall: y = {pT
h, ΔΦh,W} , z = {pT

W, pL
W}

f(y|z)DATA ≠ f(y|z)MC implies systematic uncertainty due to the modeling

Questions:
1) How large is this systematic?

2) If large, how can I correct (calibrate) for it?



A tool to calibrate the recoil: the Z leptonic events 38

Z leptonic decay: Z ⟶ ll

● Z and W bosons are similar for production mode
● Z⇒ll: the kinematics of the Z can be well 

reconstructed in the data 
● I can access f(y|z) in both data and simulation



Correct the recoil “mismodeling” with Z events 39

Correct the distribution f(y|z) for each value of z

=

For each event: y ⟶ y’ = T(y, z) such that f(y’|z)MC = f(y|z)DATA

W MC

Z MC Z data

W data
Strategy: 
➔ compare ZMC and Zdata 
➔ derive corrections
➔ apply on WMC

1

2

3

4



Let’s build T(y, z)

The program:

1) 1D quantile morphing (N=1, k=0)
2) Make it N-dimensional
3) Make it k-conditional and unbinned using quantile regression BDT based

40

Several problems:

1) y is bidimensional (correlation is important!)
2) Conditional means making bins, hard with many dimensions



1) 1D quantile morphing (N=1, k=0) 41

Purpose: find a function that transforms fMC(y) -> fDATA(y)

It is a change of variables, but I know the PDFs only through a sample

 
● Build cumulative distributions FMC(X)               

FDATA(X)
● Associate points with the same quantile values:      

X -> FDATA
-1(FMC(X))



2) Extension to 2 (or N) variables

One by one:
● Take the first variable and do 1D quantile morphing
● Take the second variable and do 1D quantile morphing, conditional to the 

first one
● Take the third variable and do 1D quantile morphing, conditional to the first 

and the second ones
● Iterate until the last variable

Bottom line:

A N-dimensional morphing can be seen as a sequence of N-1, N-2, .., 0 conditional 
morphing � it is enough to have a 1D k-conditional quantile morphing

42



3) The hard step: do it conditional

Typically “conditional = in bins of”
➔ Impossible with many dimensions, as the number of bins scales as #binsk-dim

Need for an unbinned way to tell the quantile: 
➔ a function f(z; 𝛕) for some values of the quantile 𝛕
➔ If I have fDATA(z; 𝛕) and fMC(z; 𝛕) for many values of 𝛕 (eg: 10%, 20%, …, 90%)  

the matching is done

y

z

DATA 75%
MC 75%

DATA 50%
MC 50%

DATA 25%
MC 25%

43



The solution: quantile regression with Boosted Decision Trees

REMINDER: regression = technique to fit parameters 𝛂(x) of a PDF f(y|x)

● Least squares: regression of the mean
● Recoil definition: 4 parameters that fully parametrise the distribution
● Quantile regression: regression of the quantile 𝛕(x)

How does it work?

Proper Loss function: 

Need for a versatile arbitrarily non-linear function
● Neural networks would do the job
● Boosted decision trees found to work better in this case
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Summary: the procedure 45

● A set of “quantile regressions”, for 10 different values (5%, 10%, 20%, etc.)
● Input of regressions are the k variables
● For each value of the quantile 𝛕, I can predict y𝝉 on data and MC
● The association is y𝝉

MC->y𝝉
DATA

Proof of concept on Gaussian variables: N=1, k=1



Summary: the application

Tool to solve a new and general problem:

Morph N-dimensional distribution conditional to k variables

With this tool we build a function y’ = T(y, z) such that

 fMC(y|z) -> fMC(y’|z) = fDATA(y|z)

Now I can use the tool in order to:

➢ Derive and apply a correction to the W Monte Carlo
➢ Estimate the bias if no correction is applied
➢ Estimate the systematic after the correction is applied.

46



Before and after morphing 47



Results on systematic uncertainties 48

Trade off: more information used in the recoil implies:

Larger systematic due to the modeling

MNPK = 1/3 di TK

TK: 29 ± 11 MeV

MNPK: 140 ± 14 MeV

TK: -11 ± 10 MeV

MNPK: -14 ± 7 MeV

MNPK = 5 x TK
I can correct for it

MNPK ≃ TK

Smaller systematic uncertainty due to W-pT



Conclusions

The W mass measurement in this historical moment
➢ A new precision measurement of the W mass is needed
➢ The systematic uncertainties are the problem
➢ The systematic uncertainty on the W-pT spectrum is one of the biggest

Machine learning approach
➢ New experimental definition of the recoil

○ Semi-parametric regression with custom loss function
○ Based on Deep Neural Networks

➢ Methodology to decompose the systematic uncertainties
➢ Calibration of the simulation to reduce modeling uncertainties

○ Multi-dimensional extension of the quantile morphing
○ Based on quantile regressions, implemented on Boosted Decision Trees
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Thank you!

Special thanks to:
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BACKUP
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The Standard Model predicts a precise set of relations between observables

The comparison (EW fit) between the prediction and the measurement of the EWPOs 
is a severe test for the Standard Model

Electroweak Precision Observables (EWPO)

52

Tree

Corr.



I decadimenti leptonici: una scala più precisa 53

La precisione sulla scala della misura dell’oggetto fisico 
dominante da la precisione della misura

● Muon momentum scale: 2 ⋅ 10-4

● Jet energy scale: 3 ⋅ 10-3

Anche in regioni particolari dello spazio delle 
fasi il S/B per W→ qq è molto basso.

A parità di precisione necessita di molta più 
statistica



Systematic uncertainties in the template fit 54

Many ingredients in the simulation:

● Physics of the process, from the initial to the final state
○ Incoming protons and PDFs
○ Kinematics of the W boson
○ Polarisation of the W boson and decay
○ Hadronization of quarks and gluons
○ Pileup

● Simulation of the detector
○ Acceptance
○ Efficiency
○ Trigger
○ Energy/Moentum scale and Resolution

The uncertainty in the prediction of the physics of the process or of the model of 
the detector translates to a systematic uncertainty



MET vs recoil 55

The same is not true when I consider the neutrino
● Experimentally the neutrino is called MET: sum of lepton and recoil
● Is correlated with the lepton by definition
● They are not conditionally independent given the W kinematics

Example:
● Lepton variables: θ and pT

○ Depend only on the kinematics and polarisation of the W

● Variable of the recoil: number of charged particels
○ Depends only on the kinematics of the W against which the 

recoil is recoiling

● For a fixed value of the kinematics of the W
○ Muon and recoil have fixed distribution
○ They are uncorrelated



The transverse mass 56

ppT

z (beam)

θΦCannot measure pL(ν) 
⇒ Cannot measure Δη = ημ - 

ην

Δη =0

Tutti gli impulsi sono intesi come le proiezioni sul piano trasverso

If neutrino and muon 
have the same 

angular distance 
from the beam axis

⇒ M = MT



Scelta delle osservabili (2/2): L’impulso del muone
57

p*
μ
 = m

W
/2 ≈ 40 GeV

h = p
W

 ≈ 5 GeV
p*

μ
 ≈ p

μ

h << p
μ

Lo stesso impulso trasverso del muone p
μ 

è una 

buona osservabile per estrarre il valore di m
W

m
μ 

= 0 (approx ~ 3 ⋅ 10-6)



Lepton pT 58

The transverse momentum of the lepton is sensitive to the W mass

➔ The maximum is at mW/2 in case of not pT-W
➔ With pT-W the distribution gets broader

Systematic uncertainties:

● Production of W and its decay
○ W polarisation
○ pT-W 
○ Final state radiation

● Detector simulation
○ Scale of transverse momentum



Amount of events in the samples 59

Esprimento √s [TeV] Eventi selezionati note

CMS (W+) 8 (19 fb^-1) 25 M 120M prodotti * 0.2

CMS (W+) 13 (70 fb^-1) ~ 150 sigma_W e’ doppia

ATLAS (W) 7 (4.6 fb^-1) 8 M

CDF (W) 2 (2.2 fb^-1) 0.6 M

Final state only muon-neutrino



Importance of the angle in the recoil 60



Correlation between recoil and observables 61

Correlation 
between 
measured 
and true 
recoil for 
different 
values of the 
number of 
charged 
tracks.



No bias due to the recoil definition 62

Every function is fine, as long as it is applied on both data and Monte Carlo

Data Observables
x∈Rn

hexp Experimental 
distribution of MT

2

Observables
x∈Rn Templates of MT

2MC

Same definition for 
data and MC

Change coherently 
while chaning h

Equal after 
calibration

If the training sample does not 
represent the data

Estimator of the recoil less 
powerful, but still no biasE.g.:



Input variables 63



Integrate distribution of the corrections 64



Sum of pdfs: magnitude and angle of the recoil 65



Residual correction 66

RMS: 0.96 (STK18) ⇒ 0.74 (MNPK) RMS: 1.32 (TK) ⇒ 1.24 (PK)



Regression: functions and loss function 67

Utilizzo di una DNN



The estimators 68



Modification of the pseudo-dati 69

● Spectrum modified by small amount

● Effects on MT
2 are hard to tell by eye

Uncertainty from 
the literature



Parametrising the 4-momentum of the W: the “z” variables 70

Describe the 4-momentum of the W:
● Invariant mass M

○ The recoil does not depend on the W mass

● Transverse and longitudinal momentum pT and pL
● Azimuthal angle Φ

○ Negligible in the limit of detector symmetry around Φ
○ Parametrise with the angle with respect to the W

■ No dependence on the angle Φ of the W

Two variables describing the W kinematics in the context of the recoil: pT and pL

The correlation between W and recoil starts from the conservation of 3-momentum
3D momentum of the recoil = 3D momentum of the W



Understanding the discrepancies 71

Experimentally the recoil = set of reconstructed particles
Described by some variables x

Eg: x = {hTK, NTK, hNT}
The definition of the recoil y = R(x)

Discrepancies data/MC are studied on 
the Z events

Discrepancies in f(y|z) depend on:
● discrepancies in f(x|z)
● Recoil definition R(x)

More variables
=

Larger discrepancy
= 

Larger systematic uncertainty



Make the MC similar to the data 72

The x space can be arbitrarily large
➔ In the case of our regression: 13 dimensions
➔ I need to correct the variables in a correlate
➔ Correct a space with many dimensions (k) is hard

The y space is always bidimensional (pT and Φ)
➔ I can do an effective correction on this space
➔ The correlation is extremely important

Correct f(y|z) instead of f(x|z)!

x-space
k-dim

y-space
2-dim

transverse 
mass MT

2

lepton 
space
2-dim

R(x)



Z pT and Z pL
73

Subtlety: there are differences between data and MC on the Z spectrum



Z-like variables 74



First step: apply the correction to the W - first problem 75

➢ Z and W should have no difference:
○ The conservation of momentum is universal

➢ Build a morphing that transforms fZ(y|z) tofW(y|z)
○ If there is no difference the morphing is the identity

Bias
MNPK: 2 ± 12 MeV

No discrepancy
Bias agrees with 0

W 
MC

Z MC Z 
data

W 
data



First step: apply the correction to the W - second problem

➢ In the morphing ZMC ⟶ ZDATA z = {pT
W, pL

W} 
reconstructed with the two leptons

○ In the WMC I only have z “gen level”

➢ Test on ZMC
○ Apply wrt true variables 
○ Execute a fit to evaluate the bias

76

Bias
TK: -5 ± 7 MeV

MNPK: -12 ± 11 MeV
In agreement with 0!

W 
MC

Z MC Z 
data

W 
data



Second step: uncertainty before correction 77

1) morph ZMC to ZDATA

TK: 29 ± 11 MeV

MNPK: 140 ± 14 MeV

Need to apply a 
correction

2) fit: extract the 
bias

W 
MC

Z MC Z 
data

W 
data



Third step: residual systematic uncertainties 78

➔ Do I have residual bias I can remove
➔ How much is the final systematic uncertainty?

Study on the Z:
● A new morphing which transforms ZMC to ZMC’

○ Apply it to ZMC and get ZMC’’
● Result fit:

○ TK -11 ± 10 MeV
○ MNPK -14 ± 7 MeV

Not in perfect agreement with 0, need 
for more investigation!

Z MC Z data

Z MC’ Z MC’’

Template fit

W 
MC

Z MC Z 
data

W 
data



First step: variabili data-like 79

Make a morphing and apply on ZMC, fit to estimate before applying the 
correction: need for a correction!!!

1. Build a morphing which transforms ZMC to ZDATA
a. The variables z = {pT

W, pL
W} are obtained from the momenta of the two leptons

2. Apply to ZMC and get the y “data-like”, in the sample ZMC’
3. Fit between ZMC (template) and ZMC’ (pseudo-data) Bias [MeV]

TK: 29 ± 11

PF: -80 ± 24

MNPK: 140 ± 14

Need for a 
correction!



Second step: apply the correction to the W - problem 1 80

➢ The production mechanisms and masses of Z and W are different
○ It is not obvious that fW(y|z) = fZ(y|z)
○ It make non-sense to apply a correction

➢ Build a morphing that transforms fZ(y|z) tofW(y|z)
○ With no difference the morphing is the identity
○ Fit to estimate the effect

Bias
MNPK: 2 ± 12 MeV

No discrepancy
Bias agrees with 0



Second step: apply the correction to the W - problem 2 81

➢ In the morphing ZMC ⟶ ZDATA I use z = {pT
W, pL

W} reconstructed with thw 
two leptons

○ Present in both samples
○ No similar variables in the WMC

■ I can use gen level variables such as z = {pT
W, pL

W} 

➢ Test on ZMC
○ On this sample I have {pT

W, pL
W} both true and reco with the leptons

○ Apply morphing wrt to gen level rather than reco variables
○ Fit to estimate the bias on MW

➢ No agreement with 0
○ I can smear the W kinematics at gen level to reproduce the same effect

Bias
TK: -5 ± 7 MeV

MNPK: -12 ± 11 MeV

For both definitions I have 
agreement with 0, I can 

proceed



Third step: residual systematics 82

I can apply the morphing on the WMC
➔ Residual systematics I can correct for?
➔ If not, size of systematic uncertainty

Further check: compare ZMC’ with ZDATA
➢ A new morphing between the two samples -> ZMC’’’
➢ Study the discrepancy between ZMC’ and ZMC’’’

Study on the Z:
● Build a new morphing that transforms ZMC to ZMC’

○ Apply to ZMC and get ZMC’’
● If the morphing works well ZMC’’ = ZMC’, then ZMC’ = ZDATA
● Evaluate with a fit

○ TK -11 ± 10 MeV
○ MNPK -14 ± 7 MeV

Not in perfect agreement, need for 
more investigation

Z MC Z data

Z MC’ Z MC’’

Template fit


