Discussion session: benchmark of different formalisms

Valerio Bertone and giuseppe bozzi

INFN and Università di Pavia

Istituto Nazionale di Fisica Nucleare

European Research Counci Established by the European Commission

November 27, 2019, Pavia

Resummation formalisms

$$\underset{\text{PB}}{\overset{q_T - \text{res.}}{\simeq}} e^{2S} \left[f_1 \otimes \mathcal{H} \otimes f_2 \right]$$

$$\left(\frac{d\sigma}{dq_T}\right)_{\rm res.}$$

 $\stackrel{\text{TMD}}{\propto} H \times F_1 \times F_2$

$$\stackrel{\text{SCET}}{\propto} \quad H \times B_1 \times B_2 \times S$$

Dictionary:

 $\mathcal{H} = HC_1C_2$

 $F_i = e^S C_i \otimes f_i$

$$F_i = \sqrt{S} \times B_i$$

All equivalent for factorising processes such as Drell-Yan.

Prescriptions to avoid integrating over the **Landau pole**:

- minimal prescription,
- **b*** or k_{T} * prescription.

• Non-perturbative effects are thus *intrinsically present*:

• whether large or small depends on the experimental/theoretical uncertainties.

Logarithmic counting

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_T; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b)$$

$$\times \quad \exp\left\{K(b_T;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\}$$

Accuracy	γ_K	γ_F	K	$C_{f/j}$	Н
LL	$lpha_s$	_	-	1	1
NLL	α_s^2	$lpha_s$	α_s	1	1
NLL'	α_s^2	$lpha_s$	α_s	$lpha_s$	α_s
N ² LL	$\alpha_s{}^3$	α_s^2	α_s^2	α_s	α_s
N ² LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2
N ³ LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2

Codes

6	SCETlib	J	SCET
(CuTe	ſ	SCET
(DYRes/DYTUR	BO)	ar-res
(ReSolve	J	q ₁ 105.
(RadISH	}	PB
(PB-TMD	J	
(NangaParbat	}	TMD
<u>í</u>	arTeMiDe	J	

🍯 arTeMiDe

Basic ingredients common to all codes Main differences:

- \bullet working space (b_T or q_T)
- $\begin{tabular}{ll} \bullet & \mathbf{NP} \ physics \ (prescription/cutoff \ and \ intrinsic \ k_T) \end{tabular} \end{tabular}$
- matching with fixed order

Differences

MP-physics (1): avoiding Landau pole

- **•** b_T-space: b* or "minimal prescription" (complex-b plane)

MP-physics (2): intrinsic-k_T

• NP form factor fitted to data (in principle, *x* and flavour dependent)

matching with fixed order

- multiplicative or additive
- damping function to switch off resummation/evolution
- unitarity enforcing, i.e., modified logs (NP may spoil it)

🍯 lepton cuts

The benchmark settings

- Z/γ^* production at $\sqrt{s} = 13$ TeV,
- **Resummation** only (no matching to fixed order yet),
- A number of values of Q and y:
 - we will only show results at $Q = M_z$ and y = 0.
- Consider all possible logarithmic orders:
 - \bullet up to N³LL.
- Favourite Landau-pole regularisation procedure:
 - b^*/k_T^* or "minimal prescription".
- Only standard logs:
 - no modified logs to enforce unitarity.
- \bullet q_T distribution from 1 to 100 GeV:
 - we are aware that for resummation breaks down well before,
 - benchmark exercise aimed at checking the consistency of codes/formalisms.

b* Prescription(s).

Basic idea: Replace

$$b_T o b^*(b_T) = rac{b_T}{\sqrt{1 + (b_T/b_{ ext{max}})^2}} \quad \Rightarrow \quad egin{cases} b^*(b_T o 0) o b_T \ b^*(b_T o \infty) o b_{ ext{max}} \end{cases}$$

• $b_0/b^*(b_T o \infty) o b_0/b_{
m max}$, so take $b_0/b_{
m max} \sim 1\,{
m GeV}$ as cutoff

Different options:

• "Global *b**": original, most often used

 $\tilde{\sigma}(b_T) \equiv \tilde{\sigma}[b_T, \mu_i(b_T)] \rightarrow \tilde{\sigma}(b^*) \equiv \tilde{\sigma}[b^*, \mu_i(b^*)]$

• "Local *b**": when keeping all RGE scales explicit [for more details see Lustermans, Michel, FT, Waalewijn, 1901.03331]

 $\tilde{\sigma}[b_T, \mu_i(b_T)] \rightarrow \tilde{\sigma}[b_T, \mu_i(b^*)]$

Intermediate versions are possible as well

All amount to factorizing pert. from nonpert. contributions, "ad-hocness"

Borrowed from F. Tackmann's presentation at the EWWG

Non-perturbative region

Non-perturbative region

Non-perturbative region

Logarithmic counting

- TMD factorisation provides **resummation** of large logs $L = \log(q_T/Q)$:
 - *implemented through the* **Sudakov** form fact *R*.
- A **perturbative expansion** in powers of α_s of *R* would give:

One Sudakov
for each TMD
$$R^2 = \sum_{n=0}^{\infty} a_s^n \sum_{k=1}^{2n} \widetilde{S}^{(n,k)} L^k$$
 Double-log expansion

that can be rearranged as:

$$R^{2} = \sum_{m=0}^{\infty} R_{\mathrm{N^{m}LL}}^{2} \quad \text{with} \quad R_{\mathrm{N^{m}LL}}^{2} = \sum_{n=\lfloor m/2 \rfloor}^{\infty} \widetilde{S}^{(n,2n-m)} a_{s}^{n} L^{2n-m}$$

• Therefore, multiplying *R* by a power *p* of α_s gives:

$$a_s^p R_{\rm N^mLL}^2 = \sum_{j=[(m+2p)/2]}^{\infty} \widetilde{S}^{(j-p,2j-(m+2p))} a_s^j L^{2j-(m+2p)} \sim R_{\rm N^m+2pLL}^2$$

• Bottom line: any additional power of α_s causes a shift of **two units** in the logarithmic ordering.

Matching TMD to collinear

• Accurate predictions for all q_T 's by **additive matching**, order by order in perturbation theory, of collinear and TMD calculations:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{add.match.}} = \left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} + \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} - \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}}$$

In order for the match to actually take place:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \xrightarrow{\text{f.o.}} \left(\frac{d\sigma}{dq_T}\right)_{\text{d.c.}} \xleftarrow{q_T \ll Q} \left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}}$$

Therefore, the "fixed-order" parts have to match in the relevant limits:

Log Accuracy	Minimal f.o. accuracy	
NLL'	α_s (LO)	
N ² LL	α_s (LO)	
N ² LL'	α_{s^2} (NLO)	
N ³ LL	α_{s^2} (NLO)	