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Outline

1. Introduction to PRA

2. Prompt-J/ψ pair production at the LHC in the LO of PRA with
BFKL Resummation

3. Towards NLO: rapidity divergences in loop corrections

4. Towards NLO: combining real and virtual corrections and new
doubly-logarithmic unintegrated PDF (UPDF)
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Introduction to Parton Reggeization Approach

◮ Any kT -factorization approach in QCD, which extends beyond
kT ≪ µ-region of “standard” TMD-factorization is necessarily
based on factorization of QCD amplitudes in Multi-Regge limit.

◮ Due to large NLO corrections to BFKL kernel [Fadin, Lipatov,
98’] the kT -factorization with fixed log 1/x-accuracy is not
phenomenologically applicable. One has to resum large (collinear,
running-coupling, kinematical,...) corrections in the UPDF,
which leads to variety of approaches to determine the UPDF.

◮ But the factorization formula and prescription to calculate
gauge-invariant kT -dependent hard-scattering coefficients is fixed
by the Multi-Regge limit of QCD scattering amplitudes. This is
the essence of PRA.
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Derivation of the factorization formula and UPDF

P−
2 →

P+
1 →

PDF
x1

z1
P+
1 ↓

x1P
+
1 ↓ q21 =

−q
2
1T

1−z1J/ψ

J/ψ
x2P

−
2 ↑ q22 =

−q
2
2T

1−z2

x2

z2
P−
2 ↑

PDF

◮ Factorization formula of PRA is
based on modified-MRK

approximation for matrix element of
the hard process with emission of
two additional partons.

◮ This t-channel factorized
approximation is valid in two limits:
◮ Collinear limit:

|q1,2T | ≪ µ, 0 < z1,2 < 1,

◮ Multi-Regge limit:

|q1,2T | ∼ µ, z1,2 ≪ 1.

See [Karpishkov, M.N., Saleev 2017]
for details.

◮ The IR divergence at z1,2 → 1 is regularized by rapidity ordering

condition and collinear divergence at |q1,2T | → 0 is regularized by
Sudakov Formfactor which resums log2(qT /µ) and log(qT /µ) corrections with NLL

accuracy (for Color-singlet production). 4 / 34



Derivation of the factorization formula and UPDF

P−
2 →

P+
1 →

UPDF

x1P
+
1 ↓ q̃21 = −q

2
1T

J/ψ

J/ψ

x2P
−
2 ↑

UPDF

q̃22 = −q
2
2T

◮ As a result we obtain a usual
High-Energy Factorization formula
with flux factor 2Sx1x2 for off-shell

initial-state partons,

◮ and the KMR(W) UPDF, normalized
on the usual PDF as:

µ2
∫

0

dt Φi(x, t, µ
2) = xfi(x, µ

2).

◮ The initial-state partons in our hard
part are Reggeized gluons (dashed
lines) or Reggeized quarks. It is
calculated using Feynman rules of the
Gauge-Invariant EFT for MRK
processes in QCD [Lipatov, 95’].

This is how LO in αs is computed in PRA.
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Prompt J/ψ pair production.

Based on [Phys. Rev. Lett. 123, 162002 (2019)]
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Basics of NRQCD factorization
◮ In Nonrelativistic-QCD factorization approach [Bodwin, Braaten,

Lepage 95’], the hadronization of perturbatively-produced QQ̄ pair
into heavy quarkonium is considered separately for each possible
spin (S), orbital momentum (L) and color (c = 1, 8) state of the

pair: 2S+1L
(c)
J . Transition of each QQ̄ state4 into physical

quarkonium is described by a non-perturbative factor –
Long-Distance Matrix Element (LDME).

◮ Only finite number of intermediate states does contribute to the
production, because LDMEs are organized into hierarchy
according to their scaling w.r.t. velocity of heavy quarks in the
bound state v. For J/ψ or ψ(2S) up to O(v2) these are:

3S
(1)
1 , 1S

(8)
0 , 3P

(8)
J , 3S

(8)
1 .

For P -wave states (χcJ) only 3P
(1)
J and 3S

(8)
1 contribute up to

this order.
◮ CS LDMEs can be related with wave-function of the bound state

in the potential models, while CO LDMEs are fitted to data.
4As well as higher Fock states, e.g. QQ̄g.
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NRQCD factorization: advantages and open problems
(Some) advantages:

◮ Well-defined factorization at NLO! Solves the problem with

un-cancelled IR-divergences in production of 3P
(1)
J -states through

mixing with 3S
(8)
1 state.

◮ Describes inclusive pT -spectra of charmonia and bottomonia in
hadro- and photoproduction [Butenschön, Kniehl 2011, ...].
Solves the “hard-tail” problem of pT -distribution (mostly)

through 3S
(8)
1 -contribution.

(Selected) open problems:

◮ Polarization puzzle: for J/ψ, ψ(2S), Υ(nS) at high-pT , mostly

transverse polarization is predicted (due to 3S
(8)
1 again!), while

all data are consistent with unpolarized mixture of states. If one
tries to fit also polarization data – consistency with
photoproduction is lost.

◮ HQSS relations between LDMEs for J/ψ and ηc seem not to
work [Butenschön, Kniehl, He 2014].

◮ Prompt J/ψ pair production?
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J/ψ pair production: (Selected) theory results
◮ The total cross-section is dominated by double-3S

(1)
1 contribution

[Kartvelishvili, Esakiya 83’; Humpert, Mery 83’; Qiao 2002]
◮ The CO-states contribute, [Barger et.al. 96’] proposed

double-J/ψ production as a test of CO mechanism. Relativistic

corrections to 23S
(1)
1 and 23S

(8)
1 -channels where also considered

[Li, et.al. 2013].
◮ The full calculation in the LO of CPM, including all CO states

and feed-down, was done by [He, Kniehl 2015]. The double-CO
contributions are very important at large-Mψψ and ∆Yψψ .

◮ The Double Parton Scattering (DPS) contributes to the same
kinematic region [Lansberg, et.al. 2015] ! But DPS contribution is
flat or decreasing with ∆Yψψ .

◮ The full NLO corrections in CPM for double-3S
(1)
1 channel has

been calculated by [Sun, et.al. 2016].
◮ The CS-model computation in non-gauge-invariant
kT -factorization with CCFM-based UPDFs [Baranov, et.al. 2015]
fails to describe data.

◮ And more...
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J/ψ pair production: Experimental data

◮ First measurements of 2J/ψ by LHCb (pp @ 7 TeV) [LHCb 2012;

2017]. The pψT -spectrum at 2 < yψ < 4.5 agrees reasonably with
LO CPM+NRQCD [He, Kniehl 2015] with LDMEs fitted for
inclusive single-J/ψ hadroproduction.

◮ Total cross-section measurements by D0 (pp̄ @ 1.96 TeV) [D0
2014] are also reproduced in LO CPM + NRQCD.

◮ We will concentrate on CMS (pp @ 7 TeV) [CMS 2014] and
ATLAS (pp @ 8 TeV) [ATLAS 2017] measurements which

provide a rich set of spectra vs.: Mψψ, ∆Yψψ , pψψT and pψT, lead..
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Description in Collinear Parton Model
◮ The Mψψ-spectrum (CMS-data, Full LO vs. 23S

(1)
1 NLO CPM):
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◮ The ∆Yψψ-spectrum (CMS-data, Full LO vs. 23S
(1)
1 NLO CPM):
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Fixed-order contributions in PRA
We have calculated contributions of all diagrams at O(α4

s) (LO) to all
direct and feed-down partonic channels in PRA:

R+(q1) +R−(q2) → cc̄[m] + cc̄[n],

with m,n = 2S+1L
(c)
J .

The dominant asymptotics at large Mψψ (∆Yψψ) is provided by
diagrams with t-channel (Reggeized) gluon exchange between
cc̄-states. Partonic channels can be classified according to the order in
αs in which the t-channel gluon exchange first occur:

(b) (c)(a)

R
+

R
−

R
+

R
−

R
−

R
+

R
−

R
+

R
−

(d)

(b) LT : m,n = 1S
(8)
0 , 3S

(8)
1 , 3P

(1,8)
J ,

(c) NLT: m = 3S
(1)
1 and n = 1S

(8)
0 , 3S

(8)
1 , 3P

(1,8)
J ,

(d) NNLT : m,n = 3S
(1)
1 .
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LDME fit from single charmonium pT -spectra
The CO LDMEs where fitted on data for inclusive charmonium
hadroproduction at LHC energies in exactly the same approach as for
the double-J/ψ calculation.

LDME, GeV3

〈

OJ/ψ[3S
(1)
1 ]

〉

= 1.16

M
J/ψ
0 = 3.61× 10−2

〈

OJ/ψ[3S
(8)
1 ]

〉

= 1.25× 10−3

〈

Oψ′

[3S
(1)
1 ]

〉

= 0.76

Mψ′

0 = 2.19 × 10−2
〈

Oψ′

[3S
(8)
1 ]

〉

= 3.41 × 10−4

〈

Oχc0 [3P
(1)
0 ]

〉

/m2
c = 4.77 × 10−2

〈

Oχc0 [3S
(8)
1 ]

〉

= 5.29 × 10−4

where MH
0 =

〈

OH[3S
(8)
0 ]

〉

+

R
m2

c

〈

OH[3P
(8)
0 ]

〉

.

Only LHC data with pT > 10 GeV
where fitted. χ2/d.o.f.≃ 1.
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∆Yψψ spectrum, CMS
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Yellow band and black dashed line – LO PRA.
Unfortunately, ATLAS provides only fiducial ∆Yψψ-spectrum which is
hard to compare with our predictions.
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Mψψ spectra, CMS and ATLAS
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The pψψT - spectra, CMS and ATLAS
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◮ Solid line – KMR(W) UPDF,

◮ Dashed line – Blümlein
UPDF,

◮ Dash-dotted line –
CCFM-based Jung-Hautmann
UPDF (the result from PB
UPDF will be similar).
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The pψT, lead. spectra from ATLAS
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BFKL-resummation contribution
Overall agreement of LO PRA calculation with data is quite
reasonable, except large O(10 − 100) deficit at large Mψψ and ∆Yψψ .
But radiative corrections to LT and NLT contributions could be
significant!

BFKL

R
+(k1T )

R
−(k2T )

R
−(qT )

R
+(−q′

T
)

R
−(k2T )

R
+(k1T )

R
−(qT )

R
+(−q′

T
)

m(p1T )

n(p2T ) n(p2T )

m(p1T )

◮ We resum higher-order corrections
∼ (αs∆Yψψ)

n to LT-channels using
LLA BFKL Green’s function with
suitable BLM-type
renormalization-scale setting
[Brodsky, et.al., 99’] to take into
account large running-coupling
effects.

◮ Resummation is performed for ∆Yψψ
and Mψψ-spectra. For other spectra
effect is negligible.

◮ The LO R+R− → cc̄[n]
impact-factors are well-known
[Kniehl, Vasin, Saleev 2006].
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NLT contribution
◮ Since

〈

OJ/ψ[3S
(1)
1 ]

〉

∼ (102 − 103)×
〈

OJ/ψ [3L
(8)
J ]

〉

, the NLT

contribution could be numerically significant.

◮ The
R+ +R− → cc̄

[
3S

(1)
1

]

+ g (1)

amplitude does not have any singularities for Eg → 0 or

kTg → 0 since M
(

R+ +R− → cc̄
[
3S

(1)
1

])

= 0.

◮ There is no rapidity divergence for integration over rapidity of
gluon in (1), so no double-counting with BFKL resummation or
UPDF.

◮ So we can construct gauge-invariant and IR-finite large-∆Yψψ
asymptotics for O(α5

s) NLT squared amplitudes by replacing
ordinary t-channel gluon with Reggeized one in the diagram (c).

(b) (c)(a)

R
+

R
−

R
+

R
−

R
−

R
+

R
−

R
+

R
−

(d)
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Combined effect on Mψψ and ∆Yψψ spectra
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◮ Effect of BFKL-resummation is significant, up to a factor of two.
◮ Large O(100) K-factors are found in some NLT channels in the

last ∆Yψψ-bin. The effect on direct production is +45%, but after
addition of feeddown the overall effect of NLT-contributions
reduces to +16% (the thick red line).

◮ Apparent growth of CMS cross-section with ∆Yψψ is a complete
mystery. One needs enormous Pomeron intercept
(> αLL BFKL

P ???) to fit this.
◮ Effects in ATLAS Mψψ spectra are roughly the same (see

corresponding plots on slide 15).
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Loop corrections in Lipatov’s EFT.

Mostly based on [Nucl.Phys., B946, 114715 (2019)]
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Eikonal denominators in the induced vertices
A closer look at R±g-interaction [Lipatov 95’; 97’; Bondarenko,
Zubkov 2018]:

Sint. =

∫

dx
i

gs
tr
[

R+(x)∂
2
⊥∂−

(

Wx+ [A−]−W †
x+

[A−]
)

+ (+ ↔ −)
]

,

where ∂± = 2∂/∂x∓, x± = x± = (n±x) = x0 ± x3, fields R± satisfy

MRK constraint ∂∓R±(x) = 0 and

Wx∓ [x±,xT , A±] = P exp




−igs
2

x∓∫

−∞

dx′∓A±(x±, x
′
∓,xT )





=
(
1 + igs∂

−1
± A±

)−1
,

so that ∂−1
± → −i/(k± + iε) in the Feynman rules.

⇒ multiple induced vertices with light-cone (Eikonal) denominators
appear. Pole prescription is fixed by Hermitian form of
R±g-interaction.
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Rapidity divergences and regularization
Due to the presence of the 1/q±-factors in the induced vertices, loop
integrals in EFT contain the light-cone (Rapidity) divergences:

Π
(1)
ab =

p ↓

q ↓

+

−

= g2sCAδab

∫
ddq

(2π)D

(
p
2
T (n+n−)

)2

q2(p− q)2q+q−

The regularization by explicit cutoff in rapidity was proposed by
Lipatov [Lipatov, 1995] (q± =

√

q2 + q
2
T e

±y, p+ = p− = 0):

∫
dq+dq−

q+q−
=

y2∫

y1

dy

∫
dq2

q2 + q
2
T

,

then

Π
(1)
ab ∼ δabp

2
T × CAg

2
s

∫
p
2
T d

D−2
qT

q
2
T (pT − qT )2

︸ ︷︷ ︸

ω(1)(p2
T )

×(y2 − y1) + finite terms
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Covariant regularization

To regularize RDs covariantly one have to “tilt” Wilson lines from the
light-cone [Hentschinski, Sabio Vera, Chachamis et.al. 2012-2013;
Collins 2011]:

S
(reg.)
int. =

∫

dx
i

gs
tr
[

R+(x)∂
2
⊥∂̃−

(

Wx̃+

[

Ã−

]

−W †
x̃+

[

Ã−

])

+ (+ ↔ −)
]

,

where x̃± = x± + r · x∓ with 0 < r ≪ 1, and modify the kinematic

constraint [M.N. 2019]:

∂̃∓R±(x) = 0,

⇔ p̃∓ = p∓ + r · p± for R± (Necessary to regularize R+R+ → R−R−

Green’s function at one loop!).
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Rapidity divergences at one loop
Only log-divergence ∼ log r (Blue cells in the table) is related with
Reggeization of particles in t-channel.
Integrals which do not have log-divergence before expansion in ǫ may
still contain the power-like dependence on r:

◮ r−ǫ → 0 for r → 0 and ǫ < 0.

◮ r+ǫ → ∞ for r → 0 and ǫ < 0 – weak-power divergence (Pink
cells in the table)

◮ r−1+ǫ → ∞ – power divergence. (Red)

(# LC prop.) \ (# quadr. prop.) 1 2 3 4

1 A[−] B[−] C[−] ...
2 A[+−] B[+−] C[+−] ...
3 ... ... ... ...

The weak-power and power-divergences cancel between Feynman
diagrams describing one region in rapidity, so only log-divergences are
left.
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State of the art
◮ LO BFKL kernel comes-out as rapidity-divergent part of
R+R+ → R−R− Green’s function [Bartels, Lipatov, Vacca 2012]

◮ Known QCD results for one-loop impact-factors of gluon and
quark with one scale of virtuality are reproduced [Hentschinski,
Sabio Vera, Chachamis et.al. 2012-2013]

◮ Two-loop Regge trajectory of a gluon is reproduced
[Hentschinski, Sabio Vera, Chachamis et.al. 2013]

◮ Consistency of Reggeized quark formalism is verified at one loop
on example of the process γγ → qq̄ [M.N., Saleev 2017]

◮ New one-loop impact-factors O(q) +R+(q1) → g(q + q1) (with
O(x) = tr[GµνG

µν ]) and γ⋆(q) +Q(q1) → q(q + q1) with
additional scale Q2 = −q2 besides q21 = −q

2
1T are computed [M.N.

2019] and consistency of Regge limits of one-loop amplitudes:

g(P ) +O(q) → g(P − q1) + g(q + q1),

γ(P ) + γ⋆(q) → q(P − q1) + q̄(q + q1),

between EFT and QCD is checked.
◮ NLO BFKL is in progress...
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Contributions in the EFT, gluon case
One-Reggeon contribution (negative signature, Re+Im parts @ 1 loop,
log r-divergences cancel):
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✄
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☎

�
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Two-Reggeon contribution (positive signature, does not contribute due
to color):
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P ✦
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The one-Reggeon contribution reproduces QCD result
exactly. 27 / 34



Contributions in the EFT, photon case
One-Reggeon contribution (positive signature, Re+Im parts @ 1 loop,
log r-divergences cancel):

�

✁
✭✶✮
✰

✂

✁
✭✶✮
✄

☎

✆

�

☎

✝✭✶✮

Two-Reggeon contribution (negative signature, Im part @ 1 loop):

P →

q →
A+

A
−

l ↑ ↑ q1 − l

+ +

− −

A+
+ +

=

+ +

(1)

+ + +

(2)

−

+

−

+
+

(3)

Sum of one- and two-Reggeon contributions reproduces
QCD result exactly.
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Combining real

and virtual corrections,
new doubly-logarithmic UPDF

29 / 34



Issues in combining real and virtual corrections
◮ Traditionally in BFKL-physics one ignores

longitudinal-momentum conservation and integrates over
q±-components of incoming Reggeons. Then an NLO
cross-section or impact-factor becomes:

σreal
NLO(qT1)+σ

virt.
NLO(qT1) = σfinite

NLO (qT1)+log r×KBFKL(qT1,q
′
T1) ⊗

q
′
T1

σLO(q
′
T1)

◮ It is easy to run into very pathological factorization scheme by
simply factorizing-out the divergence in arbitrary way. Additional
physical insight is needed.

◮ Using the fact, that rapidity divergences cancel in virtual and
real contributions separately one can try to introduce an
improved treatment of real corrections by relaxing some of
BFKL-approximations. The guiding principle is to not to spoil
cancellation of IR divergences (c.f. HEJ approach) and collinear

factorization.
◮ Very similar ideas lead to reasonably-behaved factorization

scheme for the forward hadron production in CGC approach [B.
Ducloe et.al. 2017], resolving the problem of negative
cross-section at NLO.
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Kinematically-improved doubly-logarithmic UPDF
◮ We where able to restore conservation of large light-cone

component of momentum in the usual BFKL-ladder (with usual
Lipatov’s vertices) and introduce an improved approximation for
the virtuality of t-channel parton into propagators:
q2i = −q

2
Ti/(1− zi) in such a way, that evolution is still

analytically tractable. In the Mellin space (
∫
dx x−NΦ(x)) ladder

with n real emissions is expressed simply as:

1

Nn

(
Kreal

BFKL

)⊗Tn
.

◮ ⇒ We solve iteratively a usual BFKL-equation in (N,xT )-space:

Φ(N,xT ) = 1 +
ᾱs
N

Γ(1− ǫ)

(4π)ǫ(−ǫ)

∫

d2−2ǫ
yT Φ(N,yT )×

[

(x2
T )
ǫδ(xT − yT )−

ǫΓ(1− ǫ)

π1−ǫ((xT − yT )2)1−2ǫ

]

,

where ᾱs = αsNc/π, to obtain a kernel Φ(N,xT ), relating PDF
and UPDF.
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Kinematically-improved doubly-logarithmic UPDF
◮ Collinear divergences factorize from the transition kernel Φ as in

[Catani, Hautmann, 94’] (checked up to O(α10
s ) !):

Zcoll. = exp

[

−
1

ǫ

∫ ᾱsSǫ

0

dα

α
γN (α)

]

, γN (α) = γ1(N)α+γ2(N)α2+. . .

where Sǫ = exp[ǫ(−γE + log 4π)] for MS-scheme.
◮ The LL BFKL series [Jaroszewicz 82’] of corrections to DGLAP

anomalous dimension γN is reproduced: γ1 = 1/N , γ2 = γ3 = 0,
γ4 = 2ζ3/N

4, γ5 = 2ζ5/N
5, . . .

◮ In doubly-logarithmic appriximation (corrections start at O(α3
s)!),

the finite part of Φ can be expressed as:

Φren.(N,xT , µ) ≃
DLA

exp

[

−ᾱs(µ)
log(µ2

x̄
2
T )

N

]

× FNP (xT ),

where x̄
2
T = x

2
T e

2γE/(4π)2.
◮ To improve convergence of Fourier-transform to qT -space we add

a non-perturbative factor: FNP = e−Λ2
x
2
T . It has no effect on

qT ≫ Λ or cross-sections. Possibly the Sudakov FF can be
added here as well. 32 / 34



Some numerical results
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◮ LO MSTW-08 PDFs are used to generate DL UPDF, Λ = 1 GeV.
◮ UPDF normalization property holds at small-x!
◮ The slope of DL UPDF at large qT is the same as that of

Blümlein UPDF [Collins, Ellis 91’; Blümlein 94’], which is
expectable since their approach is very similar, but fully in
qT -space.
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Conclusions

◮ The loop corrections in Lipatov’s EFT are well understood both
at one and two-loop level.

◮ The issue of combining real and virtual corrections requires a lot
of attention, longitudinal momentum conservation and collinear
factorization are guiding principles

◮ The doubly-logarithmic approach, resumming αs log(1/x) logx
2
T

is a convenient starting point to define phenomenologically
-reasonable UPDF

Thank you for your attention!
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