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INTRODUCTION
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  Existing subtraction algorithms beyond NLO are computationally very intensive.

  We are interested in subtraction for complicated process at very high orders.

  The factorisation of virtual corrections contains all-order information, not fully exploited.

•  Exponentiation ties together high orders to low orders.

•  Classes of possible virtual poles are absent, with implications for real radiation.

•  Virtual corrections suggest soft and collinear limits should `commute’.

  Can one use the structure of virtual singularities as an organising principle for subtraction?

  Can the simplifying features of virtual corrections be exported to real radiation?

Our viewpoint



A multi-year effort

  Antenna Subtraction.

  Stripper

  Nested Soft-Collinear Subtractions.

  ColourfulNNLO.

  N-Jettiness Slicing.

  QT Slicing.

  Projection to Born.

  Unsubtraction.

  Geometric Slicing …

The subtraction problem at NLO is completely solved, with efficient algorithms applicable
to any process for which matrix elements are known.

At NNLO after fifteen years of efforts several groups have working algorithms, successfully 
applied to `simple’ process with up to four legs.  Heavy computational costs.



ALGORITHMS



NLO Subtraction

The computation of a generic IRC-safe observable at NLO requires the combination

The necessary numerical integrations require finite ingredients in d=4.  Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finite.

Search for the simplest fully local integrand  Kn+1 with the correct singular limits.



NNLO Subtraction
The pattern of cancellations is more intricate at higher orders

More counterterm functions need to be defined

A finite expression for the observable in d=4 must combine several ingredients



FACTORISATION



Virtual factorisation: pictorial

A pictorial representation of soft-collinear factorisation for fixed-angle scattering amplitudes



Here we introduced dimensionless four-velocities  βi  = pi/Q, and factorisation vectors  niμ ,  
ni2 ≠ 0  to define the jets in a gauge-invariant way.   For outgoing quarks

Operator Definitions
The precise functional form of this graphical factorisation is 

where  Φn  is the Wilson line operator along the direction n.   For outgoing gluons

Becher, Bell 2010



Wilson line correlators

The soft jet function JE  contains soft-collinear poles: it is defined by replacing the field in 
the ordinary jet J  with a Wilson line in the appropriate color representation.

The soft function  S  is a color operator, mixing the available 
color tensors.  It is defined by a correlator of  Wilson lines.

Wilson-line matrix elements exponentiate non-trivially and have tightly constrained 
functional dependence on their arguments.  They are known to three loops.
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Soft cross sections: pictorial

Consider first the (academic) case of purely soft final state divergences.
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• Inclusive eikonal cross sections are finite.

• They are building blocks for threshold and QT

resummations.

• They are defined by gauge-invariant operator 
matrix elements.

• Fixing the quantum numbers of particles crossing 
the cut one obtains local IR counterterms.
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Collinear cross sections: pictorial
Consider next collinear final state divergences.  They are associated with individual partons.

At amplitude 
level poles 
factorise and 
exponentiate.

• Inclusive `jet cross sections’ are finite.
• They are building blocks for threshold

and QT resummations.
• They are defined by gauge-invariant

operator matrix elements.
• Fixing the quantum numbers of particles

crossing the cut one obtains local
collinear counterterms.

• Eikonal jet cross sections subtract the 
soft-collinear double counting.

Soft-collinear 
poles can be 
subtracted



Soft counterterms: all orders

Introduce  eikonal form factors  for the emission of m soft partons from n hard ones.

These matrix elements define soft gluon multiple emission currents. They are gauge invariant 
and they contain loop corrections to all orders.

Existing finite order calculations and all-order arguments are consistent with the factorisation

with corrections that are finite in dimensional regularisation, and integrable in the soft gluon 
phase space.  It is a working assumption: a formal all-order proof is still lacking.



Soft counterterms: all orders

The factorisation is reflected at cross-section level, for fixed final state quantum numbers.

The cross-section level  “radiative soft functions” are Wilson-line squared matrix elements

These functions provide a complete list of local soft subtraction counterterms, to all orders.
Indeed, summing over particle numbers and integrating over the soft phase space one finds 

This is a finite fully inclusive soft cross section, order by order in perturbation theory.



Soft current for NLO

• The single-radiative soft function acts as a color operator on the color-correlated Born.
• Beyond NLO, tree-level multiple gluon emission currents also follow from this definition.

At NLO, only the tree-level single-emission current is required, simply defined by

One obviously recovers all the well-known results for the leading-order soft gluon current

For the cross-section, the tree-level single-radiation soft function acts as a local counterterm.



Soft currents for NNLO
At one loop, for single radiation, our definition of the soft currents gives

The factorisation proposed in the classic work by  Catani-Grazzini  appears different

but it is easily matched using the factorisation of the non-radiative amplitude

Recombining, we get an explicit eikonal expression for the CG one-loop soft current

The two calculations are easily matched: same diagrammatic content, cancellations and result.



Soft currents for N3LO
The procedure is easily generalised to generic higher orders.  At two loops one finds

To map to the CG definition, express the two-loop hard part in terms of the amplitude

Recombining, we get an explicit eikonal expression for the two-loop single-gluon soft current

For the two-leg case, this was computed in (Badger, Glover 2004) to O(ϵ0) and by (Duhr, 
Gehrmann 2013) to O(ϵ2), by taking soft limits of full matrix elements. This definition allows to 
extend the calculation to the general case.

A similar definition emerges for the double-gluon soft current at one and two loops. Based 
on eikonal Feynman rules, one can begin the process of systematising these calculations. 



Collinear counterterms: all orders
For collinear poles, introduce jet matrix elements for the emission of m partons. For quarks

At cross-section level,  “radiative jet functions” can be defined as Fourier transforms of squared 
matrix elements, to account for the non-trivial momentum flow.  We propose

These functions provide a complete list of local collinear counterterms, to all orders.
Summing over particle numbers and integrating over the collinear phase space one finds 

A “two-point function”, finite order by order in perturbation theory.  Note however

• The collinear limit must still be taken (as l2→0), unlike the case of radiative soft functions.

• Working with n2 ≠ 0 eliminates spurious collinear poles, but is cumbersome in practice.



With a Sudakov decomposition

and taking l⊥→0, one recovers the full unpolarised DGLAP LO splitting kernel.

Collinear counterterms: NLO
At NLO, only tree-level single-emission contributes, resulting (for quarks) in three diagrams

Summing over helicities, and taking the n2 → 0 limit, one finds a spin-dependent kernel

• The three diagrams map precisely to the axial gauge calculation by Catani, Grazzini.
• All LO DGLAP kernels are easily reproduced, triple collinear limits are under way.



NLO subtraction
The outlines of a subtraction procedure emerge. Begin by expanding the virtual matrix element

From the master formula, get the virtual poles of the cross section in terms of virtual kernels 

Go through the list of proposed soft and collinear counterterms to collect the relevant ones

Construct the appropriate local functions. 

with a similar expression for the anti-subtraction of the soft-collinear region in terms of JE .



NNLO subtraction

Let us follow the same procedure at NNLO.  Collect the poles of the virtual amplitude

Cross-section level soft and jet functions have non-trivial structure starting at NNLO

All poles of the squared virtual amplitude can nonetheless be expressed in terms of squared 
jets and eikonal correlators, which leads to the identification of local NNLO counterterms.



NNLO subtraction: double collinear
Cross-section level double-virtual poles originate from a number of different configurations

Focus on double collinear radiation along the direction of a selected hard particle. One finds

It is easy to identify finite combinations of virtual and real (hard) collinear radiation

Real radiation naturally organises into single and double unresolved, and real-virtual terms 



N3LO subtraction

At three loops, the organisation of virtual poles becomes more intricate   …

… and constructing the cross section generates further complexity.

Nevertheless, all poles must result from cross-section-level functions. For the soft region



N3LO subtraction

Three-loop soft poles naturally arrange into triple-, double- and single-soft contributions.

Applying the completeness relation for the soft sector identifies real-radiation counterterms

The cancellation of soft poles between virtual and real contributions is then guaranteed.



OUTLOOK



  A number of successful NNLO subtraction algorithms are available.

  They are computationally expensive, either analytically, or numerically, or both.

  Extensions to multi-leg processes or higher orders is expected to be useful but hard. 

  Work on refining existing tools to find the `minimal toolbox’ is necessary and under way.

  The factorisation of soft and collinear virtual amplitudes contains important information.

  A general all-order definition of soft and/or collinear counterterms has been proposed.

  Existing results at NLO and beyond are reproduced and systematised.

  Tracing the real emission counterterms starting from virtual poles is a useful strategy.

  A parallel effort to construct a detailed analytic subtraction algorithm is under way.

  The organisation of counterterms for massless final states at N3LO is completed.

  What we have is promising preliminary evidence: a lot of work remains to be done. 

Outlook
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