Thank you.

PennState

Different forms of the kinematical constraint in BFKL

Michal Deák – Penn State University

Wanchen Li – Penn State University
 Krzysztof Kutak – Institute of Nuclear Physics, PAN, Kraków
 Anna Staśto – Penn State University

REF 2019, Pavia, Italy

Eur.Phys.J. C79 (2019) no.8, 647; arXiv:1906.09062

Motivation (What and Why)

• Kinematical constraint (k.c.) captures some higher order corrections to the BFKL kernel

• What NLL and NNLL corrections does it provide?

k.c. the same in QCD and N=4 sYM

• Can we cross check the NLL and NNLL corrections generated by k.c. against the N=4 sYM result?

 How do different forms of k.c. compare against each other?

• How do they compare in Mellin/momentum space?

The BFKL equation

In momentum space:

$$\mathcal{F}(x,k_T^2) = \mathcal{F}^{(0)}(x,k_T^2) + \bar{\alpha}_s \int_x^1 \frac{dz}{z} \int \frac{d^2 \mathbf{q}_T}{\pi q_T^2} \left[\mathcal{F}\left(\frac{x}{z}, |\mathbf{k}_T + \mathbf{q}_T|^2\right) - \Theta(k_T^2 - q_T^2) \mathcal{F}\left(\frac{x}{z}, k_T^2\right) \right]$$

In Mellin space:

$$\overline{\mathcal{F}}(\omega, k_T^2) = \int_0^1 \frac{dz}{z} z^{\omega} \mathcal{F}(z, k_T^2)$$
$$\tilde{\mathcal{F}}(\omega, \gamma) = \int_0^\infty dk_T^2 \left(k_T^{\prime 2}\right)^{-\gamma} \mathcal{F}(\omega, k_T^2)$$

$$\tilde{\mathcal{F}}(\omega,\gamma) = \tilde{\mathcal{F}}^{(0)}(\omega,\gamma) + \frac{\bar{\alpha}_s}{\omega}\chi(\gamma,\omega)\tilde{\mathcal{F}}(\omega,\gamma)$$

 χ is the BFKL kernel

The BFKL kernel in Mellin space

BFKL equation in Mellin space

 Solving the equation for eigenvalues of the BFKL kernel Mellin transform

 $\omega = \chi (\omega, \gamma)$

 $\omega = \chi_{eff} \left(\overline{\alpha}_{s}, \gamma \right)$

- BFKL kernel without the kinematical constraint $\chi_{eff}(\overline{\alpha}_{s}, \gamma) = \overline{\alpha}_{s}(\psi(1) - \psi(\gamma) - \psi(1 - \gamma))$
 - $1/\gamma$ pole

Kinematical constraint

Follows from consistency requirements for the virtuality of the t-channel gluon $\rightarrow k^2 < 0$

$$k^{2} = -z \, \bar{z} \, \hat{s} - k_{T}^{2}$$

$$\downarrow k^{2} < 0$$

$$k_{T}^{2} > z \, \bar{z} \, \hat{s}$$

$$k_{T}^{2} > z \, \bar{z} \, \hat{s}$$

$$k_{T}^{2} = k_{L}^{2} - 2\cos(\phi) \, k_{\perp} q_{\perp} + q_{\perp}^{2}$$

Inserting the on-shell condition for emitted parton

$$q^2 = \bar{z}(1-z)\hat{s} - q_T^2 = 0 \quad \longrightarrow \quad k_T^2 > \frac{z q_T^2}{1-z}$$

The BFKL equation

- Follows from consistency requirement for the virtuality of the *t*-channel gluon → k²<0
- Effectively implements energy conservation

 $k_{\perp}^2 > \frac{z}{1-z} q_{\perp}^2$

 Complicated expression → approximations possibly useful (used in literature):

small z $\mathbf{k}_{\perp}^2 > \mathbf{z} \mathbf{q}_{\perp}^2$

small z and $k'_T \approx q_T$

 \mathbf{k}_{\perp}^2 > \mathbf{z} $\mathbf{k}_{\perp}'^2$

J. Kwiecinski, A. D. Martin and P. J. Sutton

Scale choice in the BFKL equation

Mueller-Navalet jet cross section:

$$\sigma = \int \frac{d\omega}{2\pi i} \int \frac{d^2 \mathbf{k}_T}{k_T^2} \frac{d^2 \mathbf{k}_{T0}}{k_{T0}^2} \left(\frac{s}{QQ_0}\right)^{\omega} h^A(Q, \mathbf{k}_T) G_{\omega}(\mathbf{k}_T, \mathbf{k}_{T0}) h^B(Q_0, \mathbf{k}_{T0})$$

uPDF: $\bar{\mathcal{F}}(\omega, \mathbf{k}_T) = \int \frac{d^2 \mathbf{k}_{T0}}{k_{T0}^2} G_{\omega}(\mathbf{k}_T, \mathbf{k}_{T0}) h(Q_0, \mathbf{k}_{T0})$

Different scale choices:

$$G(Y;\mathbf{k}_{\scriptscriptstyle T},\mathbf{k}_{\scriptscriptstyle T0}) = \int rac{d\omega}{2\pi i} \, e^{\omega Y} \, G_\omega(\mathbf{k}_{\scriptscriptstyle T},\mathbf{k}_{\scriptscriptstyle T0})$$

$$\int \frac{d\omega}{2\pi i} \left(\frac{\nu}{k_T k_{T0}}\right)^{\omega} G_{\omega}(\mathbf{k}_T, \mathbf{k}_{T0}) = \int \frac{d\omega}{2\pi i} \left(\frac{\nu}{k_T^2}\right)^{\omega} \left(\frac{k_T}{k_{T0}}\right)^{\omega} G_{\omega}(\mathbf{k}_T, \mathbf{k}_{T0})$$

Symmetric vs. Assymetric scale

The same change in the kernel:

$$K_{\omega}^{s_{0}=k_{T}^{2}}(\mathbf{k}_{T},\mathbf{k}_{T0}) = K_{\omega}^{s_{0}=k_{T}k_{T0}}(\mathbf{k}_{T},\mathbf{k}_{T0}) \left(\frac{k_{T}}{k_{T0}}\right)^{\omega}$$
$$K_{\omega}^{s_{0}=k_{T0}^{2}}(\mathbf{k}_{T},\mathbf{k}_{T0}) = K_{\omega}^{s_{0}=k_{T}k_{T0}}(\mathbf{k}_{T},\mathbf{k}_{T0}) \left(\frac{k_{T0}}{k_{T}}\right)^{\omega}$$

depending on the scale choice

Shift in poles of γ by $\omega/2$:

$$\chi^{S}(\gamma') = \chi^{S}\left(\gamma - \frac{\omega}{2}\right) = \chi^{A}(\gamma)$$

M. Ciafaloni and G. Camici, 1998

Scale changing transformation at NLL

Shift in
$$\gamma$$
: $\chi_0\left(\gamma - \frac{\omega}{2}\right) + \bar{\alpha}_s \chi_1\left(\gamma - \frac{\omega}{2}\right) \qquad S \to A$

Expansion in ω up to $\bar{\alpha}_s$:

$$-\frac{1}{2}\bar{\alpha}_s\chi_0(\gamma)\frac{\partial\chi_0}{\partial\gamma}$$

Leading poles change:

$$-\frac{1}{2}\bar{\alpha}_s\chi_0(\gamma)\frac{\partial\chi_0}{\partial\gamma}\sim\frac{\bar{\alpha}_s}{2\gamma^3}-\frac{\bar{\alpha}_s}{2(1-\gamma)^3}$$

$$\chi_1^S \sim -\frac{1}{2\gamma^3} - \frac{1}{2(1-\gamma)^3}$$
$$\chi_1^A \sim \frac{0}{2\gamma^3} - \frac{1}{(1-\gamma)^3} .$$

Comparison with N=4 sYM

N=4 sYM result available for a symmetric scale choice

$$\chi^{\omega,A}(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma + \omega)$$

scale changing transformation
$$\chi^{\omega,S}(\gamma) = 2\psi(1) - \psi\left(\gamma + \frac{\omega}{2}\right) - \psi\left(1 - \gamma + \frac{\omega}{2}\right)$$

NLL contributions to the BFKL kernel

Expansion in ω :

$$\chi_0 + \chi^{(1)} \frac{\omega}{2} + \frac{1}{2!} \chi^{(2)} \left(\frac{\omega}{2}\right)^2 + \dots$$
$$\omega = \bar{\alpha}_s \chi_0(\gamma)$$
$$\omega = \chi_0 + \frac{1}{2} \bar{\alpha}_s \chi^{(1)} \chi_0$$

Keep terms in up to $\bar{\alpha}_s$:

$$\chi_1(\gamma) = \frac{1}{2}\chi^{(1)}\chi_0 = \frac{1}{2} \left[\psi^{(1)}(\gamma) + \psi^{(1)}(1-\gamma)\right] \left[2\psi(1) - \psi(\gamma) - \psi(1-\gamma)\right]$$

Leading poles at NLL and NNLL

Absence of subleading poles $1/\gamma^2$ (NLL) and $1/\gamma^4$ (NNLL)

$$\begin{split} \chi_1(\gamma) &= \boxed{-\frac{1}{2\gamma^3}} - \frac{\zeta(2)}{\gamma} + O(1) \\ \chi_2 &= \boxed{\frac{1}{2\gamma^5}} + \frac{\zeta(2)}{\gamma^3} + \frac{2\zeta(3)}{\gamma^2} + O\left(\frac{1}{\gamma}\right) \\ \\ \chi_1^{sYM} &= \boxed{-\frac{1}{2\gamma^3}} - 1.79 + \mathcal{O}(\gamma) , \\ \chi_2^{sYM} &= \boxed{\frac{1}{2\gamma^5}} - \frac{\zeta(2)}{\gamma^3} - \frac{9\zeta(3)}{4\gamma^2} - \frac{29\zeta(4)}{8\gamma} + \mathcal{O}(1) \\ \end{split}$$
 sym

In case of $q_T^2 < \frac{1-z}{z}k_T^2$ collinear pole in γ absent

N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, 2015; V. N. Velizhanin, 2015; S. Caron-Huot and M. Herranen, 2018.

Leading and next-to-leading pole structure to all orders

Observation: χ_k

Proven by mathematical induction to all orders!

thanks to Wanchen Li

The BFKL kernel in Mellin space

$$k_T'^2 < \frac{k_T^2}{z}$$

$$\chi(\gamma, \omega) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma + \omega)$$

$$q_T^2 < \frac{k_T^2}{z}$$

$$\chi(\omega, \gamma) = \int_0^1 \frac{du}{u} \left[\left(1 + u^{\omega + 1 - \gamma} \right) {}_2F_1(1 - \gamma, 1 - \gamma; 1; u) - 1 \right]$$

$$q_T^2 < \frac{1-z}{z} k_T^2$$

$$\chi(\omega, \gamma) = \int_0^1 \frac{du}{u} \left[(1+u)^{-\omega} \left(1 + u^{\omega+1-\gamma} \right) {}_2F_1(1-\gamma, 1-\gamma; 1; u) - 1 \right]$$

Leading behavior for $x \rightarrow 0$

Numerical solution in Mellins space

Different values of fixed $\bar{\alpha}_s$:

Numerical solution in Mellins space

Comparison of different k.c.

 $\omega = \bar{\alpha}_s \chi(\omega, \gamma)$ $\omega = \chi_{\text{eff}}(\gamma, \bar{\alpha}_s)$

Exact agreement at $\gamma = 1$ of k.c. and k.c.

Differential form of the BFKL with k.c.

kinematical constraint in the form:

$$heta\left(k_{C}\left(\mathbf{q}_{\scriptscriptstyle T},\mathbf{k}_{\scriptscriptstyle T}
ight)-z
ight)$$

shift of the *x* variable: $x \to x \max\left\{1, \frac{1}{k_C(\mathbf{q}_T, \mathbf{k}_T)}\right\} = x'$

Differential form of the BFKL equation:

$$\frac{\partial F(x,k_T^2)}{\partial \ln 1/x} = \frac{\partial F_0(x,k_T^2)}{\partial \ln 1/x} + \bar{\alpha}_s \int \frac{d^2 \mathbf{q}_T}{\pi q_T^2} \left\{ F\left(x',|\mathbf{k}_T + \mathbf{q}_T|^2\right) \Theta\left(k_C\left(\mathbf{q}_T,\mathbf{k}_T\right) - x\right) - \Theta\left(k_T^2 - q_T^2\right) F\left(x,k_T^2\right) \right\}.$$

Numerical results in momentum space

- expected ordering of magnitudes
- for large k_{\perp} k.c. tend to differ from k.c. k.c. modification in the collinear limit
- for small \mathbf{k}_{\perp} k.c. tend to be close to k.c.

- We have shown that leading poles at NLL and NNLL originating from the kinematical constraint are identical to the poles contained in the N=4 sYM results
- We have compared different forms of kinematical constraints numerically in Mellin and momentum space