NNLL RESUMMATIONS WITH ARES

ANDREA BANFI

REF 2019 - 27 NOVEMBER 2019 - PAVIA

- Resummation of final-state observables
- Observable properties (rIRC safety)
- The ARES method for QCD resummation
- Recent results (including precise determination of α_s)
- Current work in progress and outlook

FINAL-STATE OBSERVABLES

- We consider a generic final-state observable, a function $V(p_1, \ldots, p_n)$ of all possible final-state momenta p_1, \ldots, p_n
- Examples: leading jet transverse momentum in Higgs production or thrust in $e^+e^- \rightarrow hadrons$

$$\frac{p_{\rm t,max}}{m_H} = \max_{j \in \rm jets} \frac{p_{t,j}}{m_H} \qquad \qquad T \equiv \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum_i |\vec{p_i}|}$$

THE NARROW-JET LIMIT

• Selecting events close to the Born limit, i.e. $v \ll 1$, produces large logarithms of the resolution variable v due to incomplete real-virtual cancellations

$$\Sigma(v) \simeq 1 - C \, rac{lpha_s}{\pi} \ln^2 rac{1}{v} + \dots$$

lo nlo

breakdown of perturbation theory!

ÅLL-ORDER RESUMMATION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(1/v)$

Σ

$$C(v) \simeq \exp\left[\underbrace{Lg_1(\alpha_s L)}_{LL} + \underbrace{g_2(\alpha_s L)}_{NLL} + \underbrace{\alpha_s g_3(\alpha_s L)}_{NNLL} + \dots\right]$$

ALL-ORDER RESUMMATION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(1/v)$

$$\Sigma(v) \simeq e^{\underbrace{Lg_1(\alpha_s L)}_{\text{LL}}} \times \left(\underbrace{G_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s G_3(\alpha_s L)}_{\text{NNLL}} + \dots\right)$$

ALL-ORDER RESUMMATION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(1/v)$

$$\Sigma(v) \simeq e \underbrace{Lg_1(\alpha_s L)}_{\text{LL}} \times \left(\underbrace{G_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s G_3(\alpha_s L)}_{\text{NNLL}} + \dots \right)$$

7

ÅLL-ORDER RESUMMATION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(1/v)$

$$\Sigma(v) \simeq e^{\bigcup_{\text{LL}} (\alpha_s L)} \times \left(\underbrace{G_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s G_3(\alpha_s L)}_{\text{NNLL}} + \dots \right)$$

ALL-ORDER RESUMMATION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(1/v)$

THE ARES METHOD

- NNLL corrections are often sizeable and important for precision physics
- The most important limitation is the analytical treatment of the observable in some (smartly defined) conjugate space
- The Automated Resummer for Event Shapes (ARES) is a semi-numerical approach that:
 - does not rely on analytical properties of the observable
 - is NNLL accurate and extendable to higher orders
 - is fully general for a very broad category of observables (~ all that can be possibly resummed at NNLL accuracy)
 - is flexible and automated (only input: observable's routine in suitable limits)

[AB McAslan Monni Zanderighi 1412.2126] [AB El-Menoufi Monni 1807.11487]

BASIC OBSERVABLE PROPERTIES

We consider a generic infrared and collinear (IRC) safe observable

 $V(\{\tilde{p}\}, k_1, \dots, k_n) \ge 0$

• In the Born limit, $V({\{\tilde{p}\}}) = 0$

 In the limit v → 0, quasi-Born kinematics, all secondary emissions k₁,..., k_n are soft and/or collinear

RECURSIVE IRC SAFETY

- We restrict ourselves to recursive IRC (rIRC) safe observables, for which
 - the observable scaling properties when we make all emissions simultaneously soft-collinear are the same with any number of secondary emissions
 - such scaling properties are unchanged after an infinitely soft emission or a perfect collinear splitting
- Examples of rIRC observables:
 - most global event shapes
 - Durham and Cambridge jet resolution parameters (no JADE and Geneva)
 - transverse momentum of the leading jet in Higgs or vector boson production

IMPLICATIONS OF RIRC SAFETY

• The only emissions that contribute to $\Sigma(v) = \operatorname{Prob}[V(\{\tilde{p}\}, k_1, \dots, k_n)] < v$ in the limit $v \to 0$, up to powers of v, are those for which

 $V(\{\tilde{p}\}, k_1) \sim V(\{\tilde{p}\}, k_2) \sim \cdots \sim V(\{\tilde{p}\}, k_n) \sim V(\{\tilde{p}\}, k_1, \dots, k_n) \sim v$

 This, together with QCD coherence, is enough to establish the relative importance of soft-collinear contributions at all logarithmic orders

RELEVANT EMISSIONS

• At NLL the only relevant emissions are soft and collinear gluons widely separated in angle (rapidity separation $\sim \ln(1/v)$)

• Any other emission gives a contribution of relative order α_s

NLL RESUMMATION

 Unresolved emissions and virtual corrections result in a double-logarithmic Sudakov exponent, the radiator [AB Salam Zanderighi hep-ph/0407286]

$$\Sigma(v) = e^{-R_{
m NLL}(v)} \mathcal{F}_{
m NLL}(v)$$

• The effect of multiple soft and collinear gluons widely separated in angle is encoded in the single-logarithmic function $\mathcal{F}_{\mathrm{NLL}}(v)$

$$\mathcal{F}_{\mathrm{NLL}}(v) = \left\langle \Theta\left(1 - \frac{V_{\mathrm{sc}}^{\mathrm{NLL}}(\{\tilde{p}\}, k_1, \dots, k_n)}{v}\right) \right\rangle$$

• The function $V_{\rm sc}^{\rm NLL}(\{\tilde{p}\}, \{k_i\})$ is the observable for soft and collinear emissions widely separated in angle. For jet rates, this is different from $V_{\rm sc}(\{\tilde{p}\}, \{k_i\})$, the observable in the soft-collinear limit

NNLL RESUMMATION

 The NNLL radiator encoding the cancellation of unresolved real emissions and virtual corrections, can be computed for an arbitrary observable

[AB El-Menoufi Monni 1807.11487]

$$\Sigma(v) = e^{-R_{\rm NNLL}(v)} \left[\mathcal{F}_{\rm NLL}(v) + \frac{\alpha_s}{\pi} \delta \mathcal{F}_{\rm NNLL}(v) \right]$$

Clustering (jet algorithms only) Correlated emission

$$\delta \mathcal{F}_{\text{NNLL}} = \delta \mathcal{F}_{\text{clust}} + \delta \mathcal{F}_{\text{correl}} + \delta \mathcal{F}_{\text{hc}} + \delta \mathcal{F}_{\text{rec}} + \delta \mathcal{F}_{\text{wa}} + \delta \mathcal{F}_{\text{sc}}$$

Running coupling Rapidity (jet algorithms) Soft wide-angle

Soft-collinear (event shapes)

NNLL RESUMMATION

 All NNLL corrections can be written in terms of finite integrals in four dimensions

$$\Sigma(v) = e^{-R_{\rm NNLL}(v)} \left[\mathcal{F}_{\rm NLL}(v) + \frac{\alpha_s}{\pi} \delta \mathcal{F}_{\rm NNLL}(v) \right]$$

Correlated emission

Clustering (jet algorithms only)

0

$$\mathcal{F}_{\mathrm{NNLL}} = \delta \mathcal{F}_{\mathrm{clust}} + \delta \mathcal{F}_{\mathrm{correl}} + \delta \mathcal{F}_{\mathrm{hc}} + \delta \mathcal{F}_{\mathrm{rec}} + \delta \mathcal{F}_{\mathrm{wa}} + \delta \mathcal{F}_{\mathrm{sc}}$$

NNLL RESUMMATION

Every NNLL correction requires to determine an approximate expression for 9 the observable in the relevant kinematic limit

$$\Sigma(v) = e^{-R_{\text{NNLL}}(v)} \left[\mathcal{F}_{\text{NLL}}(v) + \frac{\alpha_s}{\pi} \delta \mathcal{F}_{\text{NNLL}}(v) \right]$$

$$V_{\text{sc}}^{\text{NLL}}(\{\tilde{p}\}, \{k_i\})$$

$$V_{\text{sc}}(\{\tilde{p}\}, \{k_i\})$$

$$V_{\text{sc}}(\{\tilde{p}\}, \{k_i\})$$

Clustering (jet algorithms only)

 $V_{
m sc}(\{ ilde{p}\},\{k_i\})
eq$

Correlated emission

[AB McAslan Monni Zanderighi 1412.2126]

NOC.

G,

$$\delta \mathcal{F}_{\mathrm{NNLL}} = \delta \mathcal{F}_{\mathrm{clust}} + \delta \mathcal{F}_{\mathrm{correl}} + \delta \mathcal{F}_{\mathrm{hc}} + \delta \mathcal{F}_{\mathrm{rec}} + \delta \mathcal{F}_{\mathrm{wa}} + \delta \mathcal{F}_{\mathrm{sc}}$$

$$V_{\rm sc}(\{\tilde{p}\},\{k_i\})$$
Hard collinear
Recoil
$$V_{\rm hc}(\{\tilde{p}\},\{k_i\})$$

 $V_{\mathrm{sc}}^{\mathrm{NLL}}(\{\tilde{p}\},\{k_i\})$ Running coupling Rapidity (jet algorithms)

 $V_{\mathrm{wa}}(\{ ilde{p}\},\{k_i\})$ Soft wide-angle

CAESAR VS ARES

[AB Salam Zanderighi hep-ph/0407286]

- Establishes the range in which actual emissions can be considered soft and collinear
- Uses the actual observable subroutine and computes its soft-collinear limit numerically
- Requires careful extrapolations to be extended to NNLL

[AB McAslan Monni Zanderighi 1412.2126]

- Generates emissions that are by construction soft and collinear (no energy-momentum conservation)
- Uses analytically determined soft and collinear limits of each observable
- Can be in principle extended to any logarithmic accuracy

TWO-JET RATE

 First-ever NNLL resummation of the two-jet rate for the Durham and Cambridge algorithms [AB McAslan Monni Zanderighi 1607.03111]

• NNLL resummation of the two-jet rate has been performed also for other rIRC safe jet algorithms (flavour k_t , angular-ordered Durham, inclusive k_t)

STRONG COUPLING DETERMINATION

• The NNLL resummation of the two-jet rate for the Durham algorithm leads to the most precise determination of $\alpha_s(M_Z)$ from jet observables [Verbytskyi et al 1902.08158]

 $\alpha_s(M_Z) = 0.1188 \pm 0.0009(\text{stat}) \pm 0.0009(\text{exp}) \pm 0.0010(\text{had}) \pm 0.0006(\text{theo})$

 For the first time, thanks to NNLL resummation accuracy, hadronisation uncertainties for jet observables are larger than perturbative uncertainties

WEB EXPONENTIATION

• Virtual corrections to two-leg processes in $d = 4 - 2\epsilon$ dimensions

[Magnea hep-ph/0006255]

 Soft virtual corrections arise from the exponentiation of correlated gluon [Gatheral PL133B (1983) 90]
 Erenkel Taylor NPB 246 (1984) 231]

[Frenkel Taylor NPB 246 (1984) 231] [Gardi Smillie White 1304.7040]

The web originates from eikonal matrix elements ⇒it depends only on variables that are invariant over rescaling of emitters momenta

SOFT RADIATOR

IRC singularities cancel with contribution of real "unresolved" emissions

 $V_{\rm sc}(\{\tilde{p}\},k) < \delta v$

$$V_{\rm sc}(\{\tilde{p}\},k) = d_\ell \left(\frac{k_t}{Q}\right)^a e^{-b_\ell \eta^{(\ell)}} g_\ell(\phi)$$

resolution constraint

observable for a soft emission k collinear to leg ℓ

$$\mathcal{H}(Q,\epsilon) \to H(\alpha_s(Q)) e^{-R_s(\delta v)} \exp\left[-\sum_{\ell} \int^Q \frac{dk}{k} \underbrace{\gamma_\ell(\alpha_s(k,\epsilon))}_{\text{hard collinear}}\right]$$

• The soft "radiator" $R_s(v)$ can be split in a "massless" contribution $R_s^0(v)$ and a "mass correction" $\delta R_s(v)$ [AB EI-Menoufi Monni 1807.11487]

$$R_s^0(v) = \int \frac{d^4k}{(2\pi)^4} w(k_t^2, k_t^2 + m^2) \times$$

×∑

massless rapidity boundary

$$\sum \Theta(\eta^{(\ell)}) \times \qquad \Theta\left(\ln \frac{Q}{k_t} - \eta^{(\ell)}\right) \qquad \times \Theta\left(d_\ell \left(\frac{k_t}{Q}\right)^a e^{-b_\ell \eta^{(\ell)}} g_\ell(\phi) - v\right)$$

• The mass correction $\delta R_s(v)$ accounts for the exact rapidity bound due to the fact that the web momentum is massive, while the resolution variable is defined in the massless limit

PHYSICAL COUPLING

The massless radiator involves integrating the web inclusively over its mass

$$\int_0^\infty dm^2 w(k_t^2, k_t^2 + m^2) \equiv (4\pi)^2 \frac{2C_\ell}{k_t^2} \alpha_s^{\text{phys}}(k_t)$$

- This integral gives a QCD "physical" coupling, an extension of CMW coupling beyond NLL accuracy
 [Catani Marchesini Webber NPB349 (1991) 635]
 [AB El-Menoufi Monni 1807.11487]
- This physical coupling is proportional to the cusp anomalous dimensions for a conformal theory, but it departs from it away from the conformal limit [Catani De Florian Grazzini 1904.10365]

HARD-COLLINEAR RADIATOR

• Split hard-collinear virtual corrections at the collinear scale $k \sim v^{\frac{1}{a+b_\ell}}Q$

 $\mathcal{H}(Q,\epsilon) \to H(\alpha_s(Q))e^{-R_s(\delta v)} \times$

[AB El-Menoufi Monni 1807.11487]

$$\times \exp\left[-\sum_{\ell} \int_{v^{\frac{1}{a+b_{\ell}}Q}}^{Q} \frac{dk}{k} \gamma_{\ell}(\alpha_{s}(k,\epsilon))\right] \left(1 - \sum_{\ell} \int_{v^{\frac{1}{a+b_{\ell}}Q}}^{v^{\frac{1}{a+b_{\ell}}Q}} \frac{dk}{k} \frac{\alpha_{s}(k,\epsilon)}{\pi} \gamma_{\ell}^{(0)}\right)$$
$$= R_{\rm hc}(v)$$

• The singularity of hard-collinear virtual corrections with $k \lesssim v^{\frac{1}{a+b_{\ell}}}Q$ is cancelled by unresolved hard-collinear emissions

$$\mathcal{H}(Q,\epsilon) \to H(\alpha_s(Q))e^{-R_s(\delta v)}e^{-R_{\rm hc}(v)} \left(1 - \sum_{\ell} \frac{\alpha_s(v^{\frac{1}{a+b_{\ell}}}Q)}{2\pi} C_{{\rm hc},\ell}^{(1)}\right)$$

- This strategy can be generalised to soft-large angle virtual corrections in processes with more than two legs
- The remaining real corrections are finite and can be then computed in four dimensions, either analytically or with a Monte-Carlo procedure

- Novel general method for the resummation of any rIRC safe (global) observable in the two-scale regime
 - weak applicability conditions
 - cancellation of poles between real and virtual corrections performed analytically in dimensional regularisation
 - contributions of resolved real emissions formulated in terms of four-dimensional integrals (suitable for Monte Carlo implementation)
- Spin-offs
 - Very precise determination of the strong coupling from the two-jet rate
 - Transverse momentum resummations in direct space (RadISH) [see Paolo Torrielli's talk]
- Work in progress
 - Extension of the method to three-jet events
 - Initial-state radiation: DIS and hadron collisions

- Novel general method for the resummation of any rIRC safe (global) observable in the two-scale regime
 - weak applicability conditions
 - cancellation of poles between real and virtual corrections performed analytically in dimensional regularisation
 - contributions of resolved real emissions formulated in terms of four-dimensional integrals (suitable for Monte Carlo implementation)
- Spin-offs
 - Very precise determination of the strong coupling from the two-jet rate
 - Transverse momentum resummations in direct space (RadISH) [see Paolo Torrielli's talk]
- Work in progress
 - Extension of the method to three-jet events
 - Initial-state radiation: DIS and hadron collisions

Thank you for your attention!

SOFT-COLLINEAR EMISSIONS

Integration measure for soft and collinear emissions widely separated in angle

Measure defined by the soft-collinear ensemble

$$egin{aligned} \langle G(\{k_i\})
angle &= \int d\mathcal{Z}[\{R'_{\ell_i}, k_i\}] \, G(\{k_i\}) \ &= \epsilon^{R'} \sum_{n=0}^{\infty} rac{1}{n!} \prod_{i=1}^n \left(\int_{\epsilon}^{\infty} rac{d\zeta_i}{\zeta_i} \sum_{\ell_i} R'_{\ell_i} \int_{0}^{2\pi} rac{d\phi_i^{(\ell_i)}}{2\pi} \int_{0}^{1} d\xi_i^{(\ell_i)}
ight) G(k_1, \dots, k_n) \end{aligned}$$

• Probability to emit a soft and collinear gluon k_i with $V(\{\tilde{p}\}, k_i) = v \zeta_i$ off hard leg ℓ_i with azimuthal angle $\phi_i^{(\ell_i)}$ and rapidity fraction $\xi_i^{(\ell_i)}$

$$dP(R'_{\ell_i}, k_i) \sim \frac{R'_{\ell_i}}{R'} \frac{d\zeta_i}{\zeta_i} \left(\frac{\zeta_i}{\zeta_{i-1}}\right)^R \Theta\left(\zeta_{i-1} - \zeta_i\right) \Theta\left(\zeta_i - \epsilon\right) \frac{d\phi_i^{(\ell_i)}}{2\pi} d\xi_i^{(\ell_i)}$$

• The function $G(k_1,\ldots,k_n)$ can be used to integrate out the largest of the ζ_i