Helicity-dependent generalization of the JIMWLK-evolution

F. Cougoulic, collaboration with Y. V. Kovchegov (The Ohio State University).

REF 2019 - November 25-29, 2019

Overview

Part 1: Proton spin puzzle

- 19 May 1988
- Theoretical prediction in the 70 's
- Small-x asymptotics

Part 2: Helicity JIMWLK

- Getting started: unpolarized case.
- Toward "helicity-JIMWLK"
- (Lifetime ordering)
- (Target weight functional properties)

Based on [arXiv:1910.04268]

Part 1: Proton spin puzzle

Proton spin puzzle / crisis.

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range $(0.01<x<0.7)$. The spin-dependent structure function $g_{1}(x)$ for the proton has been determined and its integral over x found to be $0.114 \pm 0.012 \pm 0.026$, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g_{i} for the neutron. These values for the integrals of g_{1} lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

Reminder

$$
\begin{equation*}
g_{1}^{\gamma}=\frac{1}{2} \sum_{q} e_{q}^{2}(\Delta q+\Delta \bar{q}), \quad \Delta q=q^{\uparrow}-q^{\downarrow} \text { w.r.t. the proton spin } \tag{1}
\end{equation*}
$$

and they observed for the proton

$$
\begin{equation*}
\int_{0.01}^{0.7} g_{1}(x) \mathrm{d} x=0.114 \pm 0.012 \text { (stat.) } \pm 0.026 \text { (syst.) } \tag{2}
\end{equation*}
$$

Remarks

- In blue: finite range of integration. "... the small x region is expected to make a large contribution to the integrals."
- In red: Ellis-Jaffe sum rule. \rightarrow Theoretical understanding of the 70's.

Theoretical prediction in the $70^{\prime} \mathrm{s}$
\rightarrow How do we understand this value? 0.114 ± 0.012 (stat.) ± 0.026 (syst.)

Ellis-Jaffe sum rule, assumptions

- Sea $q \bar{q}: \lambda^{+}(x) \simeq \lambda^{-}(x) \simeq \bar{\lambda}^{+}(x) \simeq \bar{\lambda}^{-}(x)$
- Ansatz $\Delta s \sim 0$ (no intrinsic strangeness)
- Belief that valence quarks carry the proton spin.

$$
\begin{align*}
& \text { we obtain }^{11} \\
& \qquad \int_{0}^{1} d \xi g_{1}^{e p}(\xi)=\frac{g_{A}}{12}(1.78) \tag{6}\\
& \qquad \int_{0}^{1} d \xi g_{1}^{e n}(\xi)=\frac{g_{A}}{12}(-0.22), \tag{7}\\
& \text { where } g_{A}=1.248 \pm .010
\end{align*}
$$

Ellis-Jaffe sum rule prediction (70’s): $0.185 \pm 0.0015 \longrightarrow \underline{\text { Not compatible with } 0.114}$

Where is the missing spin ?

Old fundamental problem $(\sim 30 y) \rightarrow$ looking at small number adding up to $1 / 2$.

- There are progresses \rightarrow Still don't understand the spin of the proton in term of QCD dof.

The missing spin of the proton?

A more recent picture of the proton spin.

Spin sum rule (Jaffe Manohar decomposition [Nucl. Phys. B337, 509 (1990)])

Possibilities:

- Gluon spin
- Quark/Gluon angular orbital momentum

Problems

- Gauge-dependence and non-unicity of the decomposition.
(e.g. Ji-decomposition has no identification of gluon spin/OAM)

Large and low x region. Experiments only access a finite range of $x \ldots$

$$
\begin{equation*}
\Sigma_{q}=\int_{0}^{1} \mathrm{~d} x\left(q^{\uparrow}(x)-q^{\downarrow}(x)\right) \tag{3}
\end{equation*}
$$

Possibilities

- Large-x?
- Small-x?

Potential solution, small-x tail (1/3)

Question: What is the value of the following?

$$
\begin{equation*}
\left.\int_{0}^{x_{m i n}} \mathrm{~d} x\left(q^{\uparrow}(x)-q^{\downarrow}(x)\right)\right|_{\text {GIobal fit }}-\left.\int_{0}^{x_{m i n}} \mathrm{~d} x\left(q^{\uparrow}(x)-q^{\downarrow}(x)\right)\right|_{\text {Small- }-\mathrm{x}}=? ? \tag{4}
\end{equation*}
$$

Parton disribution functions at small-x are given by

$$
\begin{equation*}
P D F(x) \sim\left(\frac{1}{x}\right)^{\alpha}, \quad \text { where } \alpha \text { is the intercept. } \tag{5}
\end{equation*}
$$

Observable	Evolution	Intercept	$\begin{gathered} Q^{2}=3 \mathrm{GeV}^{2} \\ \alpha_{s}=0.343 \end{gathered}$	$\begin{gathered} Q^{2}=10 \mathrm{GeV}^{2} \\ \alpha_{s}=0.249 \end{gathered}$	$\begin{gathered} Q^{2}=87 \mathrm{GeV}^{2} \\ \alpha_{s}=0.18 \end{gathered}$
Unpolarized flavor singlet structure function F_{2}	LO BFKL Pomeron	$1+\frac{\alpha_{s} N_{c}}{\pi} 4 \ln 2$	1.908	1.659	1.477
Unpolarized flavor non-singlet structure function F_{2}	Reggeon	$\sqrt{\frac{2 \alpha_{s} C_{F}}{\pi}}$	0.540	0.460	0.391
Flavor singlet structure function g_{1}^{S}	us (Pure Glue) BER (Pure Glue) $\operatorname{BER}\left(N_{f}=4\right)$	$\begin{aligned} & 2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \\ & 3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \\ & 3.45 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \end{aligned}$	$\begin{aligned} & 0.936 \\ & 1.481 \\ & 1.400 \end{aligned}$	$\begin{aligned} & 0.797 \\ & 1.262 \\ & 1.190 \end{aligned}$	$\begin{aligned} & 0.678 \\ & 1.073 \\ & 1.011 \end{aligned}$
Flavor non-singlet structure function $g_{1}^{N S}$	BER and us (large- N_{c})	$\sqrt{\frac{\alpha_{s} N_{c}}{\pi}}$	0.572	0.488	0.415

Potential solution, small-x tail (2/3)

Ballpark Phenomenology

Attach the small-x tail to existing helicity PDF given by the intercept α.
$h P D F \sim\left(\frac{1}{x}\right)^{\alpha}$

Borrowed from Y.Kovchegov
x_{0} is the small value where the asymptotic is attached to the existing helicity PDFs

Potential solution, small-x tail (3/3)

Define

$$
\begin{equation*}
\Delta \Sigma^{\left[x_{m i n}\right]}\left(Q^{2}\right) \equiv \int_{x_{m i n}}^{1} d x \Delta \Sigma\left(x, Q^{2}\right) \tag{6}
\end{equation*}
$$

Borrowed from Y.Kovchegov

Part 2: Helicity JIMWLK

The small-x region (1/2)

Unpolarized case, small-x evolution
BK $\left(\operatorname{large} N_{c}\right) \longleftrightarrow$ JIMWLK $\left(\right.$ all $\left.N_{c}\right)$

Helicity-dependent small-x evolution
KPS (large N_{c} or large $\left.N_{c} \& N_{f}\right) \longleftrightarrow " h$-JIMWLK" $\left(\right.$ all $\left.N_{c}\right)$

Some remarks on KPS

- KPS ~ "helicity BK"
- KPS equations, written in the shock wave formalism.
- Found by sub-eikonal correction to the eikonal shock-wave.
- Equations written using Wilson Lines and polarized Wilson Lines
- Closes in two limits: large $N c /$ large $N_{c} \& N_{f}$.
\Rightarrow Does not close for arbitrary N_{c} and N_{f}
Rmk: \exists other frameworks for g_{1} at small-x, such as Bartel, Ermolaev, and Ryskin (1996).

The small-x region (2/2)
Yuri's (and al.) approach "Simplify, Evolve, and Solve"
[Y.V Kovchegov, D. Pitonyak, and M. D. Sievert 2016 2017] [Y.V Kovchegov, and M. D. Sievert 2018]

Helicity distributions (flavor-singlet)

$$
\begin{equation*}
g_{1 L}^{S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c}}{(2 \pi)^{6}} \int d^{2} \zeta d^{2} w d^{2} y e^{-i \underline{i} \cdot(\underline{\zeta}-\underline{y})} \int_{\Lambda^{2} / s}^{1} \frac{d z}{z} \frac{\underline{\zeta}-\underline{w}}{|\underline{\zeta}-\underline{w}|^{2}} \cdot \frac{\underline{y}-\underline{w}}{|\underline{y}-\underline{w}|^{2}} G_{\underline{w}, \underline{\zeta}}(z s) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\underline{w}, \underline{\zeta}}(z s)=\frac{k_{1}^{-} p^{+}}{N_{c}} \operatorname{Re}\left\langle\operatorname{T} \operatorname{tr}\left[V_{\underline{\zeta}} V_{\underline{w}}^{p o l} \dagger\right]+\mathrm{T} \operatorname{tr}\left[V_{\underline{w}}^{p o l} V_{\underline{\zeta}}^{\dagger}\right]\right\rangle \tag{8}
\end{equation*}
$$

Think of it as a regular dipole amplitude (for the moment)

Derivation of JIMWLK - Following [A.H. Mueller, Phys.Lett. B523, 243 (2001)]

Rapidity-dependent expectation value of an arbitrary operator $\hat{\mathcal{O}}$ is

Step 1: Increase $Y \longrightarrow Y+\delta Y$. Two equivalent pictures:
(a) Test operator evolves \rightarrow additional gluons by a kernel \mathcal{K}.
(b) Evolve the target weight functional.

Step 2: Equate the two to find:

$$
\begin{equation*}
\partial_{Y}\left\langle\hat{\mathcal{O}}_{\alpha}\right\rangle_{Y}=\int \mathcal{D} \alpha\left(\mathcal{K} \cdot \hat{\mathcal{O}}_{\alpha}\right) \mathcal{W}_{Y}[\alpha]=\int \mathcal{D} \alpha \hat{\mathcal{O}} \partial_{Y} \mathcal{W}_{Y}[\alpha] \tag{9}
\end{equation*}
$$

Step 3: Integrate by parts:

$$
\begin{equation*}
\mathcal{K} \cdot \mathcal{W}_{Y}[\alpha]=\partial_{Y} \mathcal{W}_{Y}[\alpha] \tag{10}
\end{equation*}
$$

Derivation of JIMWLK - In practice and tricks to learn (1/4)

Using Ic coordinates $a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)$
Frame choice: \rightarrow Probe minus-moving, target plus-moving.

Def: Wilson Lines are

$$
\begin{equation*}
W_{\underline{x}}^{(R)}\left[b^{-}, a^{-}\right] \equiv \mathrm{P} \exp \left\{i g \int_{a^{-}}^{b^{-}} d x^{-} t_{R}^{a} \alpha^{a}\left(x^{+}=0, x^{-}, \underline{x}\right)\right\} \tag{11}
\end{equation*}
$$

\Rightarrow Depends only on the background field $\alpha=A^{+}$(Lorentz Gauge).

Shorthand notation: $W_{\underline{x}}^{(R)} \equiv W_{\underline{x}}^{(R)}[\infty,-\infty]$.
Consider a test operator of two Wilson Lines (WL)

$$
\hat{\mathcal{O}}_{\underline{\underline{1}, \underline{0}}}=W_{\underline{\underline{0}}}^{\left(R_{0}\right) \dagger} \otimes W_{\underline{\underline{1}}}^{\left(R_{1}\right)}=\stackrel{R_{0},}{\underline{0}} \begin{align*}
& R_{1} \tag{12}\\
& \underline{1}
\end{align*}
$$

Derivation of JIMWLK - In practice and tricks to learn (2/4)

Step 1a: Diagrams to consider (plus horizontal mirroring)

\Rightarrow How does one generate all those diagrams?

Consider the second diagram in the first row:

$$
\begin{equation*}
-\alpha_{s} \int \mathrm{~d}^{2} \underline{x}_{2} \frac{\underline{x}_{21} \cdot \underline{x}_{20}}{\underline{x}_{21}^{2} \underline{x}_{20}^{2}} U_{\underline{2}}^{b a}\left(W_{\underline{0}}^{\left(R_{0}\right) \dagger} t_{R_{0}}^{b} \otimes W_{\underline{1}}^{\left(R_{1}\right)} t_{R_{1}}^{a}\right) \tag{13}
\end{equation*}
$$

Difficulties for a generic test operator $\hat{\mathcal{O}}$
(1) Color generator \rightarrow depends on the WL irrep.
(2) Position of the emission/absorption vertex \rightarrow differs in every topology.
(3) Grows of the number of diagrams with the number of WL involved.

Derivation of JIMWLK - In practice and tricks to learn (3/4)
Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

Derivation of JIMWLK - In practice and tricks to learn (3/4)
Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

\Rightarrow Valid for any irrep R.

Derivation of JIMWLK - In practice and tricks to learn (3/4)
Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

\Rightarrow Valid for any irrep R.

Remarks:

- Semi-infinite WL which does not cross the shock-wave \rightarrow Identity in color space.
- Semi-infinite WL which does cross the shock-wave \rightarrow Complete to infinite WL.

$$
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}t_{R}^{a} W_{\underline{x}}^{(R)} & \text { for } y^{-}>0 \tag{15}\\ W_{\underline{x}}^{(R)} t_{R}^{a} & \text { for } y^{-}<0\end{cases}
$$

Derivation of JIMWLK - In practice and tricks to learn (3/4)

Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

\Rightarrow Valid for any irrep R.

Remarks:

- Semi-infinite WL which does not cross the shock-wave \rightarrow Identity in color space.
- Semi-infinite WL which does cross the shock-wave \rightarrow Complete to infinite WL.

$$
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}t_{R}^{a} W_{\underline{x}}^{(R)} & \text { for } y^{-}>0 \tag{15}\\ W_{\underline{x}}^{(R)} t_{R}^{a} & \text { for } y^{-}<0\end{cases}
$$

\Rightarrow Sign of y^{-}gives the position of t_{R} w.r.t. the WL.

Derivation of JIMWLK - In practice and tricks to learn (3/4)

Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

\Rightarrow Valid for any irrep R.

Remarks:

- Semi-infinite WL which does not cross the shock-wave \rightarrow Identity in color space.
- Semi-infinite WL which does cross the shock-wave \rightarrow Complete to infinite WL.

$$
\begin{align*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}t_{R}^{a} W_{\underline{x}}^{(R)} & \text { for } y^{-}>0 \\
W_{\underline{x}}^{(R)} t_{R}^{a} & \text { for } y^{-}<0\end{cases} \tag{15}\\
\Rightarrow \text { Sign of } y^{-} \text {gives the position of } t_{R} \text { w.r.t. the WL. } \tag{2}
\end{align*}
$$

- Leibniz rule for the functional derivative \rightarrow All vertex insertions in the test operator

Derivation of JIMWLK - In practice and tricks to learn (3/4)

Main trick: take functional derivative w.r.t. the α-field.

$$
\begin{equation*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) W_{\underline{x}}^{(R)}\left[\infty, y^{-}\right] t_{R}^{a} W_{\underline{x}}^{(R)}\left[y^{-},-\infty\right] \tag{14}
\end{equation*}
$$

\Rightarrow Valid for any irrep R.

Remarks:

- Semi-infinite WL which does not cross the shock-wave \rightarrow Identity in color space.
- Semi-infinite WL which does cross the shock-wave \rightarrow Complete to infinite WL.

$$
\begin{align*}
\frac{\delta W_{\underline{x}}^{(R)}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}t_{R}^{a} W_{\underline{x}}^{(R)} & \text { for } y^{-}>0 \\
W_{\underline{x}}^{(R)} t_{R}^{a} & \text { for } y^{-}<0\end{cases} \tag{15}\\
\Rightarrow \text { Sign of } y^{-} \text {gives the position of } t_{R} \text { w.r.t. the WL. } \tag{2}
\end{align*}
$$

- Leibniz rule for the functional derivative \rightarrow All vertex insertions in the test operator
\Rightarrow Valid for any number of Wilson Lines.

Derivation of JIMWLK - In practice and tricks to learn (4/4)

\Rightarrow How does one generate all those diagrams?

$$
\begin{align*}
& \mathcal{K}_{J I M W L K} \equiv \frac{\alpha_{s}}{\pi^{2}} \int \mathrm{~d}^{2} x_{\perp} \mathrm{d}^{2} y_{\perp} \mathrm{d}^{2} w_{\perp} \frac{(\underline{x}-\underline{w}) \cdot(\underline{y}-\underline{w})}{|\underline{x}-\underline{w}|^{2}|\underline{y}-\underline{w}|^{2}} \\
&\left(U_{\underline{w}}-\frac{U_{\underline{x}}+U_{\underline{y}}}{2}\right)^{b a} \frac{(i g)^{-2} \delta^{2}}{\delta \alpha^{a}\left(x^{-}<0, \underline{x}\right) \delta \alpha^{b}\left(y^{-}>0, \underline{y}\right)} . \tag{16}
\end{align*}
$$

Equating the two picture and integrating by parts yields

$$
\begin{equation*}
\partial_{Y} W_{Y}[\alpha]=\mathcal{K}_{J I M W L K} \cdot W_{Y}[\alpha] \tag{17}
\end{equation*}
$$

Toward "helicity-JIMWLK" - Polarized Wilson Lines

Polarized Wilson Lines:

$$
\begin{equation*}
W_{\underline{x}}^{(R), p o l}\left[b^{-}, a^{-}\right]=W_{\underline{x}}^{(R), p o l, q}\left[b^{-}, a^{-}\right]+W_{\underline{x}}^{(R), p o l, g}\left[b^{-}, a^{-}\right] \tag{18}
\end{equation*}
$$

\Rightarrow Depends on $\alpha, \beta, \psi, \bar{\psi}$, where $\beta=\epsilon_{\perp}^{i j} \partial_{i} A_{j}$.
\Rightarrow Two components: $q \bar{q}$ t-channel exchange $(\psi, \bar{\psi})$ and g t-channel exchange (β)

$$
\left(W_{\underline{x}}^{(R)}\right)^{p o l} \equiv \underline{R} \underline{x}
$$

$$
\left(W_{\underline{x}}^{(R)}\right)^{p o l, g} \propto
$$

Toward "helicity-JIMWLK" - Diagrammatic content

Consider the test operator

$$
\hat{\mathcal{O}}_{\underline{1}, \underline{0}}=s\left(W_{\underline{0}}^{\left(R_{0}\right) \dagger} \otimes W_{\underline{1}}^{\left(R_{1}\right), p o l}+\text { c.c. }\right)=\begin{align*}
& R_{0}, \underline{0} \tag{19}\\
& R_{1} \longrightarrow \\
& \underline{1}
\end{align*}
$$

Sub-eikonal helicity-dependent diagrams. Flavor-singlet case only here!

- The polarization information is carried by the WL at \underline{x}_{2}.
- The latter two diagrams change the irrep of the WL crossing the shock-wave at \underline{x}_{1}.

Toward "helicity-JIMWLK" - Functional derivatives (1/2)

$$
\begin{gather*}
\frac{\delta W_{\underline{x}}^{(R) p o l, q}}{\delta \alpha^{a}\left(y^{-}, \underline{y}\right)}=i g \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}W_{\underline{x}}^{(R) p o l} t_{R}^{a} & \text { for } y^{-}<0 \\
t_{R}^{a} W_{\underline{x}}^{(R)} \text { pol } & \text { for } y^{-}>0\end{cases} \tag{20}\\
\frac{\delta W_{\underline{x}}^{(R) p o l}}{\delta \beta^{a}\left(y^{-}, \underline{y}\right)}=\eta_{R} \frac{i g p_{1}^{+}}{s} \delta^{(2)}(\underline{y}-\underline{x}) \begin{cases}W_{\underline{x}}^{(R)} t_{R}^{a} & \text { for } y^{-}<0 \\
t_{R}^{a} W_{\underline{x}}^{(R)} & \text { for } y^{-}>0\end{cases} \tag{21}
\end{gather*}
$$

with $\eta_{R}=\delta_{R=F}+\delta_{R=\bar{F}}+2 \delta_{R=A}$
$\Rightarrow \frac{\delta}{\delta \beta}$ acting on a polarized WL gives an unpolarized WL!

$$
\frac{\delta^{2}\left(V_{\underline{x}}^{p o l, q}\right)_{j^{\prime} i^{\prime}}}{\delta \bar{\psi}_{\alpha, i}\left(y_{1}^{-}, \underline{y}_{1}\right) \delta \psi_{\beta, j}\left(y_{2}^{-}, \underline{y}_{2}\right)}=\delta^{(2)}\left(\underline{y}_{1}-\underline{x}\right) \delta^{(2)}\left(\underline{y}_{2}-\underline{x}\right)\left(i g \sqrt{p_{1}^{+} / s}\right)^{2}\left\{\begin{array}{cl}
\left(t^{b}\right)_{j^{\prime} j} U_{\underline{x}}^{b a}\left(t^{a}\right)_{i i^{\prime}} & \text { for } y_{1}^{-}<0<y_{2}^{-} \tag{22}\\
\text {otherwise }
\end{array}\right.
$$

\Rightarrow Change the representation of the WL crossing the shock-wave.

$$
\begin{align*}
\frac{\delta^{2}\left(U_{\underline{x}}^{p o l, q}\right)^{a b}}{\delta \bar{\psi}_{\alpha, i}\left(y_{1}^{-}, \underline{y}_{1}\right) \delta \psi_{\beta, j}\left(y_{2}^{-}, \underline{y}_{2}\right)}= & -\delta^{(2)}\left(\underline{y}_{1}-\underline{x}\right) \delta^{(2)}\left(\underline{y}_{2}-\underline{x}\right)\left(i g \sqrt{p_{1}^{+} / s}\right)^{2}\left(\frac{\gamma^{+} \gamma^{5}}{2}\right)_{\alpha \beta} \\
& \times\left[\theta\left(y_{1}^{-}\right) \theta\left(-y_{2}^{-}\right) U_{\underline{x}}^{a a^{\prime}}\left[\infty, y_{1}^{-}\right]\left(t^{a^{\prime}} V_{\underline{x}}\left[y_{1}^{-}, y_{2}^{-}\right] t^{b^{\prime}}\right)_{i j} U_{\underline{x}}^{b^{\prime} b}\left[y_{2}^{-},-\infty\right]\right. \\
& \left.+\theta\left(y_{2}^{-}\right) \theta\left(-y_{1}^{-}\right) U_{\underline{x}}^{a a^{\prime}}\left[\infty, y_{2}^{-}\right]\left(t^{b^{\prime}} V_{\underline{x}}\left[y_{1}^{-}, y_{2}^{-}\right] t^{a^{\prime}}\right)_{i j} U_{\underline{x}}^{b^{\prime} b}\left[y_{1}^{-},-\infty\right]\right] . \tag{23}
\end{align*}
$$

Toward "helicity-JIMWLK" - Functional derivatives (2/2)

Shorthand notations (to absorb some of the trivial factors)

For the field $\alpha(x)$ and the field $\beta(x)$

$$
\begin{gather*}
D_{\underline{y}, a, \lessgtr}^{+} \equiv(i g)^{-1} \frac{\delta}{\delta \alpha^{a}\left(y^{-} \lessgtr 0, \underline{y}\right)} . \tag{24}\\
D_{\underline{y}, a, \lessgtr}^{\perp} \equiv\left(\frac{i g p_{1}^{+}}{s}\right)^{-1} \frac{\delta}{\delta \beta^{a}\left(y^{-} \lessgtr 0, \underline{y}\right)} . \tag{25}
\end{gather*}
$$

For the quark fields we have

$$
\begin{align*}
& D_{\underline{y}, \alpha, i, \lessgtr}^{\psi} \equiv\left(i g \sqrt{p_{1}^{+} / s}\right)^{-1} \frac{\delta}{\delta \psi_{\alpha, i}\left(y^{-} \lessgtr 0, \underline{y}\right)} \tag{26}\\
& D_{\underline{y}, \alpha, i, \lessgtr}^{\bar{\psi}} \equiv\left(i g \sqrt{p_{1}^{+} / s}\right)^{-1} \frac{\delta}{\delta \bar{\psi}_{\alpha, i}\left(y^{-} \lessgtr 0, \underline{y}\right)} \tag{27}
\end{align*}
$$

Toward "helicity-JIMWLK" - Evolution kernel

Evolution Kernel for the helicity-dependent evolution:

$$
\begin{align*}
\mathcal{K}_{h}\left[\tau, \tau^{\prime}\right] \equiv & \left(\mathcal{K}^{e i k}+\mathcal{K}^{\beta}+\mathcal{K}^{\psi, \bar{\psi}}\right)\left[\tau, \tau^{\prime}\right] \\
= & \frac{\alpha_{s}}{\pi^{2}} \int \mathrm{~d}^{2} w_{\perp} \frac{\underline{X^{\prime}} \cdot \underline{Y^{\prime}}}{X^{\prime 2} Y^{\prime 2}} \theta^{(3)}\left(\tau-\tau^{\prime}\right) \theta\left(z^{\prime}-\frac{\Lambda^{2}}{s}\right) \theta\left(X^{\prime 2}-\frac{1}{z^{\prime} s}\right) \theta\left(Y^{\prime 2}-\frac{1}{z^{\prime} s}\right) \tag{28}\\
& \times\left\{U_{\underline{w}}^{b a} D_{\underline{x}, a,<}^{+} D_{\underline{y}, b,>}^{+}-\frac{1}{2}\left(D_{\underline{x}, a,<}^{+} D_{\underline{y}, a,<}^{+}+D_{\underline{x}, a,>}^{+} D_{\underline{y}, a,>}^{+}\right)\right. \\
& +\frac{1}{2} U_{\underline{w}}^{p o l, b a}\left(D_{\underline{x}, a,<}^{+} D_{\underline{y}, b,>}^{\perp}+D_{\underline{x}, a,<}^{\perp} D_{\underline{y}, b,>}^{+}\right) \\
& \left.+\left(\frac{1}{2} \gamma^{5} \gamma^{-}\right)_{\beta \alpha} \frac{1}{2}\left(\left(V_{\underline{w}}^{p o l}\right)_{i j} D_{\underline{x}, j, \alpha,<}^{\bar{\psi}} D_{\underline{y}, i, \beta,>}^{\psi}+\left(V_{\underline{w}}^{p o l} \dagger\right)_{i j} D_{\underline{x}, j, \alpha,>}^{\bar{\psi}} D_{\underline{y}, i, \beta,<}^{\psi}\right)\right\} .
\end{align*}
$$

where $\underline{X} \equiv \underline{x}-\underline{w}, \underline{Y} \equiv \underline{y}-\underline{w}, \tau \equiv\left\{z, z X^{2}, z Y^{2}\right\}$, and $\tau^{\prime} \equiv\left\{z^{\prime}, z^{\prime} X^{\prime 2}, z^{\prime} Y^{\prime 2}\right\}$.

Evolution Equation

$$
\begin{equation*}
\mathcal{W}_{\tau}[\alpha, \beta, \psi, \bar{\psi}]=\mathcal{W}_{\tau}^{(0)}[\alpha, \beta, \psi, \bar{\psi}]+\int d^{3} \tau^{\prime} \mathcal{K}_{h}\left[\tau, \tau^{\prime}\right] \cdot \mathcal{W}_{\tau^{\prime}}[\alpha, \beta, \psi, \bar{\psi}] \tag{29}
\end{equation*}
$$

where $d^{3} \tau^{\prime} \equiv \frac{d z^{\prime}}{z^{\prime}} \mathrm{d}^{2} \underline{X^{\prime}} \mathrm{d}^{2} \underline{Y^{\prime}}$.

$$
\Rightarrow \text { Need an initial condition } \mathcal{W}_{\tau}^{(0)}
$$

Life-time ordering

Two steps in the evolution of $\hat{\mathcal{O}}_{\underline{1}, \underline{0}}$

To generate DLA-evolution:

$$
\begin{aligned}
\tau & =\left\{z, z \underline{x}_{10}^{2}, z \underline{x}_{10}^{2}\right\} \\
\tau^{\prime} & =\left\{z_{2}, z_{2} \underline{x}_{20}^{2}, z_{2} \underline{x}_{21}^{2}\right\} \\
\tau^{\prime \prime} & =\left\{z_{3}, z_{3} \underline{x}_{32}^{2}, z_{3} \underline{x}_{32}^{2}\right\}
\end{aligned}
$$

We previously had:

$$
\begin{equation*}
\mathcal{K}_{k}=\mathcal{K}^{e i k}+\mathcal{K}^{\beta}+\mathcal{K}^{\psi, \bar{\psi}} \tag{30}
\end{equation*}
$$

Comparing to JIMWLK-kernel

$$
\begin{equation*}
\mathcal{K}_{J I M W L K}=\int \mathrm{d}^{2} \underline{X} \mathrm{~d}^{2} \underline{Y} \widetilde{\mathcal{K}^{e i k}} \tag{31}
\end{equation*}
$$

where $\widetilde{\mathcal{K}^{e i k}}$ does not have the $\theta\left(\tau-\tau^{\prime}\right)$ imposing lifetime ordering.

- For LLA JIMWLK this is unnecessary since UV and IR integrals converge.
- Beyond LLA, solutions are known to be unstable, but lifetime ordering condition helps! [E. lancu, J. D. Madrigal, A. H. Mueller, G. Soyez, D. N. Triantafyllopoulos, Phys. Lett. B744, 293 (2015)] and [B. Ducloué, E. lancu, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos, JHEP 04, 081 (2019)]
- Curiosity: this lifetime ordering appears here for $\mathcal{K}^{e i k}$ as a formal requirement for the DLA helicity-evolution.

Target weight functional properties $(1 / 3)$

Did I cheat you?

Target weight functional properties $(1 / 3)$

Did I cheat you? Yes \rightarrow On the last step: integration by parts.

Target weight functional properties $(1 / 3)$

Did I cheat you ? Yes \rightarrow On the last step: integration by parts.

What I shown up to now

$$
\begin{equation*}
\left\langle\hat{\mathcal{O}}_{p o l}\right\rangle_{\tau}=\left\langle\hat{\mathcal{O}}_{p o l}\right\rangle_{0}+\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi} \int \mathrm{d}^{3} \tau^{\prime}\left(\mathcal{K}_{k}\left[\tau, \tau^{\prime}\right] \cdot \hat{\mathcal{O}}_{p o l}\right) \mathcal{W}_{\tau^{\prime}} \tag{32}
\end{equation*}
$$

and what we want

$$
\begin{equation*}
\left\langle\hat{\mathcal{O}}_{p o l}\right\rangle_{\tau}=\left\langle\hat{\mathcal{O}}_{p o l}\right\rangle_{0}+\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi} \int \mathrm{d}^{3} \tau^{\prime} \hat{\mathcal{O}}_{p o l}\left(\mathcal{K}_{k}\left[\tau, \tau^{\prime}\right] \cdot \mathcal{W}_{\tau^{\prime}}\right) \tag{33}
\end{equation*}
$$

One needs (and similar for \mathcal{W}_{0})

$$
\begin{cases}\lim _{\alpha(x) \rightarrow \pm \infty} \mathcal{W}_{\tau}[\alpha, \beta, \psi, \bar{\psi}]=0, & \forall x, \tag{34}\\ \lim _{\beta(x) \rightarrow \pm \infty} \mathcal{W}_{\tau}[\alpha, \beta, \psi, \bar{\psi}]=0, & \forall x .\end{cases}
$$

Target weight functional properties (2/3)

Assume the following ansatz

$$
\begin{equation*}
\mathcal{W}_{\tau}=\mathcal{W}_{\tau}^{\text {unpol }}+\Sigma \mathcal{W}_{\tau}^{\text {pol }} \tag{35}
\end{equation*}
$$

Since \mathcal{K}_{h} contains $\mathcal{K}_{J I M W L K}$, it would be natural to recover the latter after integrating out sub-eikonal fields in the former:

$$
\begin{align*}
& \int \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{W}_{\tau}^{\text {unpol }}[\alpha, \beta, \psi, \bar{\psi}]=\mathcal{W}_{\tau}^{J I M W L K}[\alpha] \tag{36}\\
& \int \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{W}_{\tau}^{\text {pol }}[\alpha, \beta, \psi, \bar{\psi}]=0 \tag{37}
\end{align*}
$$

Consider an operator $\mathcal{O}[\alpha, \beta, \psi, \bar{\psi}] \equiv \mathcal{O}_{\text {unpol }}[\alpha]+\sigma \mathcal{O}_{\text {pol }}[\alpha, \beta, \psi, \bar{\psi}]$

$$
\begin{equation*}
\langle\mathcal{O}\rangle_{\tau}=\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi}\left[\mathcal{O}_{\text {unpol }}+\sigma \mathcal{O}_{\text {pol }}\right]\left[\mathcal{W}_{\tau}^{\text {unpol }}+\Sigma \mathcal{W}_{\tau}^{\text {pol }}\right] \tag{38}
\end{equation*}
$$

PT-symmetry \rightarrow keep $\{1, \sigma \Sigma\}$-terms only

$$
\begin{equation*}
\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{O}_{\text {pol }} \mathcal{W}_{\tau}^{\text {unpol }}=0 \tag{39}
\end{equation*}
$$

Target weight functional properties $(3 / 3)$

Implications for the weight functional evolution

$$
\begin{aligned}
\mathcal{W}_{\tau}^{J I M W L K}[\alpha]=\mathcal{W}_{0}+\int \mathrm{d}^{3} \tau^{\prime} & \mathcal{K}^{e i k}\left[\tau, \tau^{\prime}\right] \mathcal{W}_{\tau^{\prime}}^{J I M W L K}[\alpha] \\
& \Rightarrow \text { Recover the JIMWLK evolution as expected }
\end{aligned}
$$

$$
\begin{equation*}
\mathcal{W}_{\tau}^{\text {pol }}[\alpha, \beta, \psi, \bar{\psi}]=\mathcal{W}_{0}^{\text {pol }}+\int \mathrm{d}^{3} \tau^{\prime} \mathcal{K}_{h}\left[\tau, \tau^{\prime}\right] \mathcal{W}_{\tau^{\prime}}^{\text {pol }}[\alpha, \beta, \psi, \bar{\psi}] \tag{41}
\end{equation*}
$$

\Rightarrow Need the full kernel for the evolution

Summary and prospects

Summary

- Helicity-dependent generalization of the JIMWLK evolution. Allowing all N_{c} and N_{f} numerical study of small-x asymptotics of helicity distributions.
- Kernel containing the eikonal LO JIMWLK kernel and terms involving sub-eikonal interactions with quark-field and gluon-field.
- Helicity dependent Kernel in DLA requires lifetime and longitudinal momentum -orderings. \longrightarrow Independent argument in favor to keep-lifetime ordering to all orders in JIMWLK and BK kernels

Prospects

- Initial condition for $\mathcal{W}^{(0)}$ based on an helicity dependent MV-model (almost out).
- Flavor non-singlet helicity-dependent evolution kernel.
- Both require operators that are non diagonal in flavor and irrep (e.g. $q \rightarrow g$ by exchanging polarization information with the shock wave, or sources for fermion fields)

Backup : Polarized Wilson Lines

$$
\begin{equation*}
W_{\underline{x}}^{(R) p o l, g}\left[b^{-}, a^{-}\right]=\eta_{R} \frac{i g p_{1}^{+}}{s} \theta\left(b^{-}\right) \theta\left(-a^{-}\right) \int_{a^{-}}^{b^{-}} \mathrm{d} x^{-} W_{\underline{x}}^{(R)}\left[b^{-}, x^{-}\right] \beta\left(x^{-}, \underline{x}\right) W_{\underline{x}}^{(R)}\left[x^{-}, a^{-}\right] \tag{42}
\end{equation*}
$$

with $\eta_{R}=\delta_{R=F}+\delta_{R=\bar{F}}+2 \delta_{R=A}$

$$
\begin{aligned}
V_{\underline{x}}^{p o l, q}\left[b^{-}, a^{-}\right]= & -\frac{g^{2} p_{1}^{+}}{s} \theta\left(b^{-}\right) \theta\left(-a^{-}\right) \\
& \int_{a^{-}}^{b^{-}} \mathrm{d} x_{1}^{-} \int_{x_{1}^{-}}^{b^{-}} \mathrm{d} x_{2}^{-} V_{\underline{x}}\left[b^{-}, x_{2}^{-}\right] t^{b} \psi_{\beta}\left(x_{2}^{-}, \underline{x}\right) U_{\underline{x}}^{b a}\left[x_{2}^{-}, x_{1}^{-}\right]\left[\frac{1}{2} \gamma^{+} \gamma^{5}\right]_{\alpha \beta} \bar{\psi}_{\alpha}\left(x_{1}^{-}, \underline{x}\right) t^{a} V_{\underline{x}}\left[x_{1}^{-}, a^{-}\right] . \\
\left(U_{\underline{x}}^{p o l, q}\left[b^{-}, a^{-}\right]\right)^{a b}= & -\frac{g^{2} p_{1}^{+}}{s} \theta\left(b^{-}\right) \theta\left(-a^{-}\right) \\
& \int_{a^{-}}^{b-} \mathrm{d} x_{1}^{-} \int_{x_{1}^{-}}^{b-} \mathrm{d} x_{2}^{-} U^{a a^{\prime}}\left[b^{-}, x_{2}^{-}\right] \bar{\psi}\left(x_{2}^{-}, \underline{x}\right) t^{a^{\prime}} V_{\underline{x}}\left[x_{2}^{-}, x_{1}^{-}\right]\left[\frac{1}{2} \gamma^{+} \gamma^{5}\right] t^{b^{\prime}} \psi\left(x_{1}^{-}, \underline{x}\right) U_{\underline{x}}^{b^{\prime} b}\left[x_{1}^{-}, a^{-}\right] \\
& + \text {c.c.. }
\end{aligned}
$$

