# Prompt hadroproduction of pseudoscalar charmonia in the $k_T$ factorization approach

Wolfgang Schäfer <sup>1</sup>

<sup>1</sup> Institute of Nuclear Physics, PAN, Kraków

Workshop on Resummation, Evolution, Factorization (REF 2019), 25-29 November 2019, University of Pavia

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Outline

#### Introduction

 $\gamma^*\gamma^* 
ightarrow \eta_c(1S,2S)$  transition form factors: light front description

 $k_T$ -factorization formulation: off-shell matrix element

Results for LHCb kinematics - "forward production"

Results for ATLAS/CMS kinematics - "central production"

#### Conclusions

- I. Babiarz, R. Pasechnik, W. S. and A. Szczurek, "Prompt hadroproduction of  $\eta_c(1S, 2S)$  in the  $k_T$ -factorization approach," arXiv:1911.03403 [hep-ph].
- I. Babiarz, V. P. Goncalves, R. Pasechnik, W. S. and A. Szczurek, " $\gamma^* \gamma^* \rightarrow \eta_c(15, 25)$  transition form factors for spacelike photons," Phys. Rev. D **100**, no. 5, 054018 (2019) [arXiv:1908.07802 [hep-ph]].

## Introduction



•  $\eta_c$ : *S*-wave, spin-singlet, even C-parity  $\rightarrow$  couple to two photons/gluons.

물 🖌 🛪 물 🕨

æ

## Description of the mechanism $\gamma^* \gamma^* \rightarrow \eta_c(1S, 2S)$

Production of  $\eta_c$  in double-tagged  $e^+e^-$  collisions measures the  $\gamma^*\gamma^*\eta_c$  transition form factor.



$$\mathcal{M}_{\mu\nu}(\gamma^*(q_1)\gamma^*(q_2) \to \eta_c) = 4\pi\alpha_{\rm em} (-i)\varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} F(Q_1^2, Q_2^2)$$

Light-front representation of the transition form factor:

$$F(Q_1^2, Q_2^2) = e_c^2 \sqrt{N_c} 4m_c \cdot \int \frac{dz d^2 \mathbf{k}}{z(1-z)16\pi^3} \psi(z, \mathbf{k}) \\ \left\{ \frac{1-z}{(\mathbf{k}-(1-z)\mathbf{q}_2)^2 + z(1-z)\mathbf{q}_1^2 + m_c^2} + \frac{z}{(\mathbf{k}+z\mathbf{q}_2)^2 + z(1-z)\mathbf{q}_1^2 + m_c^2} \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

#### Nonrelativistic quarkonium wave functions



Radial momentum space wave function for different potentials.

#### Radial wave function are obtained from the Schrödinger equation

J. Cepila, J. Nemchik, M. Krelina and R. Pasechnik, Eur. Phys. J. C 79, no. 6, 495 (2019).

$$\frac{\partial^2 u(r)}{\partial r^2} = (V_{\text{eff}}(r) - \epsilon)u(r), \quad u(r) = \sqrt{4\pi} \, r\psi(r), \quad u(p) = \sqrt{\frac{2}{\pi}} \int_0^\infty r dr j_0(pr)u(r)$$
$$\Psi_{\sigma\bar{\sigma}}(\vec{p}) = \underbrace{\frac{1}{\sqrt{2}} \chi_{\sigma}^{\dagger} i\sigma_2 \chi_{\bar{\sigma}}}_{\text{spin-singlet}} \underbrace{\frac{u(p)}{p} \frac{1}{\sqrt{4\pi}}}_{\text{s-wave}}.$$

#### Light-front wave functions

Frame-independent  $q\bar{q}$  component from LF-Fock-state expansion:

$$|\eta_c; P_+, \mathbf{P}\rangle = \sum_{i,j,\lambda,\bar{\lambda}} \frac{\delta_j^i}{\sqrt{N_c}} \int \frac{dz d^2 \mathbf{k}}{z(1-z) 16\pi^3} \Psi_{\lambda\bar{\lambda}}(z, \mathbf{k}) |c_{i\lambda}(zP_+, \mathbf{p}_c) \bar{c}_{\bar{\lambda}}^j((1-z)P_+, \mathbf{p}_{\bar{c}})\rangle + \dots$$

$$egin{array}{rcl} \Psi_{\lambdaar\lambda}(z,{f k})&=&ar u_\lambda(zP_+,{f k})\gamma_5 v_{ar\lambda}((1-z)P_+,-{f k})\,\psi(z,{f k})\ \psi(z,{f k})&=&rac{\pi}{\sqrt{2M_{car c}}}rac{u(p)}{p}\,. \end{array}$$

 $\psi(z,k_{T})$  (GeV<sup>-2</sup>)  $\eta_{c}$  (1S)



Terentev prescription valid for weakly bound system  $\mathbf{p} = \mathbf{k}, \quad p_z = (z - \frac{1}{2})M_{c\bar{c}}, \quad M_{c\bar{c}}^2 = \frac{\mathbf{k}^2 + m_{c}^2}{2(1-z)}.$ Helicity dependence from Melosh-Trf. of RF-WF

 $\psi(z,k_T)$  (GeV<sup>-2</sup>)  $\eta_c(2S)$ 



Radial light-front wave function for Buchmüller-Tye potential.

#### F(0,0) transition for both on-shell photons

$$F(0,0) = e_c^2 \sqrt{N_c} \, 4m_c \cdot \int \frac{dz d^2 \mathbf{k}}{z(1-z) 16\pi^3} \frac{\psi(z,\mathbf{k})}{\mathbf{k}^2 + m_c^2} \,,$$

F(0,0) is related to the two-photon decay width by the formula:

$$\Gamma(\eta_c \to \gamma\gamma) = \frac{\pi}{4} \alpha_{\rm em}^2 M_{\eta_c}^3 |F(0,0)|^2.$$

F(0,0) can be rewrite in the terms of radial momentum space wave function u(p):

$$F(0,0) = e_c^2 \sqrt{2N_c} \frac{2m_c}{\pi} \int_0^\infty \frac{dp \, p \, u(p)}{\sqrt{M_{c\bar{c}}^3} (p^2 + m_c^2)} \frac{1}{2\beta} \log\left(\frac{1+\beta}{1-\beta}\right) \,,$$

In the non-relativistic (NR) limit, where  $p^2/m_c^2 \ll 1, \beta \ll 1$ , and  $2m_c = M_{c\bar{c}} = M_{\eta_c}$ , we obtain

$$F(0,0) = e_c^2 \sqrt{N_c} \sqrt{2} \frac{4}{\pi \sqrt{M_{\eta_c}^5}} \int_0^\infty dp \, p \, u(p) = e_c^2 \sqrt{N_c} \frac{4 \, R(0)}{\sqrt{\pi M_{\eta_c}^5}},$$

where  $\beta = \frac{p}{\sqrt{p^2 + m_c^2}}$ , the velocity v/c of the quark in the  $c\bar{c}$  cms-frame and R(0) radial wave function at the origin.

・ロト・日本・ヨト・ヨー シック

# F(0,0) for both on-shell photons

|                     | $\frac{1}{1} = \frac{1}{1} = \frac{1}$ |                                |                                              |                          |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|--------------------------|--|--|
| potential type      | $m_c$ [GeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ F(0,0)   [\text{GeV}^{-1}]$  | Γ <sub><math>\gamma\gamma</math></sub> [keV] | $f_{\eta_c}[\text{GeV}]$ |  |  |
| harmonic oscillator | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.051                          | 2.89                                         | 0.2757                   |  |  |
| logarithmic         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.052                          | 2.95                                         | 0.3373                   |  |  |
| power-like          | 1.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.059                          | 3.87                                         | 0.3074                   |  |  |
| Cornell             | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.039                          | 1.69                                         | 0.3726                   |  |  |
| Buchmüller-Tye      | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.052                          | 2.95                                         | 0.3276                   |  |  |
| experiment          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.067\pm0.003[1]$             | $5.1 \pm 0.4$ [1]                            | $0.335 \pm 0.075$ [2]    |  |  |
| experiment          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.052<br>$0.067 \pm 0.003$ [1] | 5.1 ± 0.4 [1]                                | 0.335 ± 0.075 [2]        |  |  |

Transition form factor |F(0,0)| for  $\eta_{c}(1S)$  at  $Q_{1}^{2} = Q_{2}^{2} = 0$ .

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).

[2] K. W. Edwards et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 30 (2001) [hep-ex/0007012].

| R(0 | ) and | $\gamma\gamma$ -width | for | $\eta_{c}($ | 1S) | derived | in | the | non-relativistic | limit. |
|-----|-------|-----------------------|-----|-------------|-----|---------|----|-----|------------------|--------|
|-----|-------|-----------------------|-----|-------------|-----|---------|----|-----|------------------|--------|

| potential type      | $R(0)[GeV^{3/2}]$ | $\Gamma_{\gamma\gamma}  [\text{keV}]   \mathrm{M} = \mathrm{M}_{\eta_{\mathrm{c}}}$ | $\Gamma_{\gamma\gamma}  [\text{keV}]  \mathrm{M} = 2 \mathrm{m_c}$ |
|---------------------|-------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| harmonic oscillator | 0.6044            | 5.1848                                                                              | 5.8815                                                             |
| logarithmic         | 0.8919            | 11.290                                                                              | 11.157                                                             |
| power-like          | 0.7620            | 8.2412                                                                              | 10.297                                                             |
| Cornell             | 1.2065            | 20.660                                                                              | 13.568                                                             |
| Buchmüller-Tye      | 0.8899            | 11.240                                                                              | 11.409                                                             |
|                     |                   |                                                                                     |                                                                    |

η<sub>c</sub> decay constant:

$$f_{\eta_c} = \frac{-i}{p_+} \langle 0|\bar{c}(0)\gamma_+\gamma_5 c(0)|\eta_c(p_+)\rangle = \frac{\sqrt{N_c} \, 4m_c}{16\pi^3} \int_0^1 \frac{dz}{z(1-z)} \int d^2\mathbf{k} \, \psi(z,\mathbf{k})$$

# F(0,0) for both on-shell photons

| potential type      | $m_c$ [GeV] | F(0,0)  [GeV <sup>-1</sup> ] | $\Gamma_{\gamma\gamma}$ [keV] | $f_{\eta_c}$ [GeV] |
|---------------------|-------------|------------------------------|-------------------------------|--------------------|
| harmonic oscillator | 1.4         | 0.03492                      | 2.454                         | 0.2530             |
| logarithmic         | 1.5         | 0.02403                      | 1.162                         | 0.1970             |
| power-like          | 1.334       | 0.02775                      | 1.549                         | 0.1851             |
| Cornell             | 1.84        | 0.02159                      | 0.938                         | 0.2490             |
| Buchmüller-Tye      | 1.48        | 0.02687                      | 1.453                         | 0.2149             |
| experiment [1]      | -           | $0.03266\pm0.01209$          | $2.147\pm1.589$               |                    |

Transition form factor |F(0,0)| for  $\eta_c(2S)$  at  $Q_1^2 = Q_2^2 = 0$ .

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).

| potential type      | R(0) [GeV <sup>3/2</sup> ] | $\Gamma_{\gamma\gamma}  [\text{keV}]   \mathrm{M} = \mathrm{M}_{\eta_{\mathrm{c}}}$ | $\Gamma_{\gamma\gamma}$ [keV] M = 2m <sub>c</sub> |
|---------------------|----------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| harmonic oscillator | 0.7402                     | 5.2284                                                                              | 8.8214                                            |
| logarithmic         | 0.6372                     | 3.8745                                                                              | 5.6946                                            |
| power-like          | 0.5699                     | 3.0993                                                                              | 5.7594                                            |
| Cornell             | 0.9633                     | 8.8550                                                                              | 8.6493                                            |
| Buchmüller-Tye      | 0.7185                     | 4.9263                                                                              | 7.4374                                            |

R(0) and  $\gamma\gamma$ -width for  $\eta_c(2S)$  derived in the non-relativistic limit.

# Normalized transition form factor $\tilde{F}(Q^2, 0)$



Normalized transition form factor  $\tilde{F}(Q^2, 0)$  as a function of photon virtuality  $Q^2$ . The BaBar data are shown for comparison.

```
J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 81, 052010 (2010) [arXiv:1002.3000 [hep-ex]].
```

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

# Transition form factor $F(Q_1^2, Q_2^2) \gamma^* \gamma^* \rightarrow \eta_c(1S, 2S)$



Transition form factor for  $\eta_c(1S)$  and  $\eta_c(2S)$  for Buchmüller -Tye potential. Bose symmetry  $Q_1^2 \leftrightarrow Q_2^2$ .



The  $\gamma^*\gamma^* \to \eta_c$  (1S) and  $\gamma^*\gamma^* \to \eta_c$  (2S) form factor as a function of  $(Q_1^2, Q_2^2)$  and  $(\omega, \bar{Q}^2)$  for the Buchmüller-Tye potential for illustration.

ヘロト 人間 ト 人 ヨト 人 ヨトー

э

$$\omega = rac{Q_1^2-Q_2^2}{Q_1^2+Q_2^2} \;\; {
m and} \;\; ar Q^2 = rac{Q_1^2+Q_2^2}{2} \;.$$

#### Hadroproduction of $\eta_c(1S, 2S)$ via gluon-gluon fusion

 $\frac{d\sigma}{dyd^2\boldsymbol{p}} = \int \frac{d^2\boldsymbol{q}_1}{\pi\boldsymbol{q}_1^2} \mathcal{F}(\mathbf{x}_1,\boldsymbol{q}_1^2) \int \frac{d^2\boldsymbol{q}_2}{\pi\boldsymbol{q}_2^2} \mathcal{F}(\mathbf{x}_2,\boldsymbol{q}_2^2)$  $\times \delta^{(2)}(\boldsymbol{q}_1 + \boldsymbol{q}_2 - \boldsymbol{p}) \frac{\pi}{(\mathbf{x}_1\mathbf{x}_2\mathbf{s})^2} \overline{|\mathcal{M}|^2},$ 

where the momentum fractions of gluons are fixed as  $x_{1,2} = m_T \exp(\pm y)/\sqrt{s}$ . The off-shell matrix element is written in terms of the Feynman amplitude as (we restore the color-indices): Catani, Ciafaloni & Hautmann; Gribov, Levin & Ryskin, Collins & Ellis

$$\mathcal{M}^{ab} = \frac{q_{1\perp}^{\mu} q_{2\perp}^{\nu}}{|\mathbf{q}_{1}||\mathbf{q}_{2}|} \mathcal{M}^{ab}_{\mu\nu} = \frac{q_{1+}q_{2-}}{|\mathbf{q}_{1}||\mathbf{q}_{2}|} n_{\mu}^{+} n_{\nu}^{-} \mathcal{M}^{ab}_{\mu\nu} = \frac{x_{1}x_{2}s}{2|\mathbf{q}_{1}||\mathbf{q}_{2}|} n_{\mu}^{+} n_{\nu}^{-} \mathcal{M}^{ab}_{\mu\nu} \,.$$

In covariant form, the matrix element reads:

$$\mathcal{M}_{\mu\nu}^{ab} = (-i)4\pi\alpha_{\rm s}\,\varepsilon_{\mu\nu\alpha\beta}q_1^{\alpha}q_2^{\beta}\,\frac{\text{Tr}[t^at^b]}{\sqrt{N_c}}\,I(\boldsymbol{q}_1^2,\boldsymbol{q}_2^2)\,.$$

To the lowest order, it is proportional to the matrix element for the  $\gamma^* \gamma^* \eta_c$  vertex. In particular, the form factor  $I(\mathbf{q}_1^2, \mathbf{q}_2^2)$  is related to the  $\gamma^* \gamma^* \eta_c$  transition form factor  $F(\mathbf{Q}_1^2, \mathbf{Q}_2^2)$ ,  $\mathbf{Q}_i^2 = \mathbf{q}_i^2$  as

$$F(Q_1^2, Q_2^2) = e_c^2 \sqrt{N_c} I(q_1^2, q_2^2),$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### $k_T$ -factorization

$$n_{\mu}^{+}n_{\mu}^{-}\mathcal{M}_{\mu\nu}^{ab} = 4\pi\alpha_{s}(-i)[\mathbf{q}_{1},\mathbf{q}_{2}]\frac{Tr[t^{a}t^{b}]}{\sqrt{N_{c}}}I(\mathbf{q}_{1}^{2},\mathbf{q}_{2}^{2}) = 4\pi\alpha_{s}(-i)\frac{1}{2}\delta^{ab}\frac{1}{\sqrt{N_{c}}}[\mathbf{q}_{1},\mathbf{q}_{2}]I(\mathbf{q}_{1}^{2},\mathbf{q}_{2}^{2}),$$

and averaging over colors, we obtain our final result:

$$\frac{d\sigma}{dyd^2\boldsymbol{p}} = \int \frac{d^2\boldsymbol{q}_1}{\pi \boldsymbol{q}_1^4} \mathcal{F}(x_1, \boldsymbol{q}_1^2) \int \frac{d^2\boldsymbol{q}_2}{\pi \boldsymbol{q}_2^4} \mathcal{F}(x_2, \boldsymbol{q}_2^2) \,\delta^{(2)}(\boldsymbol{q}_1 + \boldsymbol{q}_2 - \boldsymbol{p}) \,\frac{\pi^3 \alpha_s^2}{N_c(N_c^2 - 1)} |[\boldsymbol{q}_1, \boldsymbol{q}_2] \, I(\boldsymbol{q}_1^2, \boldsymbol{q}_2^2)|^2.$$

Parametrizing the transverse momenta as  $\boldsymbol{q}_i = (\boldsymbol{q}_i^x, \boldsymbol{q}_i^y) = |\boldsymbol{q}_i|(\cos \phi_i, \sin \phi_i)$ , we can write the vector product  $[\boldsymbol{q}_1, \boldsymbol{q}_2]$  as

$$[\boldsymbol{q}_1, \boldsymbol{q}_2] = \boldsymbol{q}_1^x \boldsymbol{q}_2^y - \boldsymbol{q}_1^y \boldsymbol{q}_2^x = |\boldsymbol{q}_1| |\boldsymbol{q}_2| \sin(\phi_1 - \phi_2).$$

In our numerical calculations presented below, we set the factorization scale to  $\mu_F^2 = m_T^2$ , and the renormalization scale is taken in the form:

$$\alpha_s^2 \rightarrow \alpha_s(\max{\{m_T^2, \boldsymbol{q}_1^2\}})\alpha_s(\max{\{m_T^2, \boldsymbol{q}_2^2\}})$$

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

#### Normalization

$$\begin{split} &\Gamma(\eta_c \to \gamma \gamma) \quad = \quad \Gamma_{\rm LO}(\eta_c \to \gamma \gamma) \left(1 - \frac{20 - \pi^2}{3} \frac{\alpha_s}{\pi}\right), \\ &\Gamma(\eta_c \to gg) \quad = \quad \Gamma_{\rm LO}(\eta_c \to gg) \left(1 + 4.8 \, \frac{\alpha_s}{\pi}\right). \end{split}$$

Table: Total decay widths as well as |F(0,0)| obtained from  $\Gamma_{tot}$  using the next-to-leading order approximation (see Eq. (1)).

|              | Experimental values        | Derived from NLO          |
|--------------|----------------------------|---------------------------|
|              | $\Gamma_{tot}$ (MeV)       | $ F(0,0) _{gg}[GeV^{-1}]$ |
| $\eta_c(1S)$ | 31.9±0.7                   | $0.119{\pm}0.001$         |
| $\eta_c(2S)$ | $11.3 {\pm} 3.2 {\pm} 2.9$ | $0.053{\pm}0.010$         |

Table: Radiative decay widths as well as |F(0,0)| obtained from  $\Gamma_{\gamma\gamma}$  using leading order and next-to-leading order approximation.

|              | Experimental values                                   | Derived from LO      | Derived from NLO                    |
|--------------|-------------------------------------------------------|----------------------|-------------------------------------|
|              | $\Gamma_{\gamma\gamma}(	ext{keV})$                    | $ F(0,0) [GeV^{-1}]$ | $ F(0,0) _{\gamma\gamma}[GeV^{-1}]$ |
| $\eta_c(1S)$ | 5.0 ±0.4                                              | 0.067±0.003          | $0.079 {\pm} 0.003$                 |
| $\eta_c(2S)$ | $1.9 \pm 1.3 \cdot 10^{-4} \cdot \Gamma_{\eta_c(2S)}$ | $0.033{\pm}0.012$    | $0.038 {\pm} 0.014$                 |

ъ

M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018), =,

#### **Results in LHCb kinematics**



**Figure:** Two-dimensional distributions in  $(x_1, q_{1T})$  (left panel) and in  $(x_2, q_{2T})$  (right panel) for  $\eta_c(1S)$  production for  $\sqrt{s} = 8$  TeV. In this calculation the KMR UGD was used for illustration.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### **Results in LHCb kinematics**



Figure: Distributions in  $\log_{10}(x_1)$  or  $\log_{10}(x_2)$  (left panel) and distributions in  $q_{1T}$  or  $q_{2T}$  (right panel) for the LHCb kinematics. Here the different UGDs were used in our calculations. Here we show an example, where  $\sqrt{s} = 7$  TeV.

イロト 不得 トイヨト イヨト

3

### Unintegrated gluon distributions



Figure: Unintegrated gluon densities for typical scale  $\mu^2 = 100 \text{ GeV}^2$  for  $\eta_c(1S)$  production in proton-proton scattering at LHCb kinematics.

$$xg(x,\mu_F^2) = \int^{\mu_F^2} \frac{d\mathbf{k}^2}{\mathbf{k}^2} \mathcal{F}(x,\mathbf{k}^2,\mu_F^2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### $p_T$ distributions in LHCb kinematics



**Figure:** Differential cross section as a function of transverse momentum for prompt  $\eta_c(1S)$  production compared with the LHCb data [1] for  $\sqrt{s} = 7, 8 \text{ TeV}$  and preliminary experimental data [2] for  $\sqrt{s} = 13 \text{ TeV}$ . Different UGDs were used. Here we used the  $g^*g^* \to \eta_c(1S)$  form factor calculated from the power-law potential.

R. Aaij *et al.* [LHCb Collaboration], Eur. Phys. J. C **75**, no. 7, 311 (2015).
 A. Usachov, PhD-thesis, "Study of charmonium production using decays to hadronic final states with the LHCb experiment," arXiv:1910.08796 [hep-ex].

- note: no color-octet contribution included. Small color octet contribution is a general observation in *k*<sub>T</sub>-factorization approaches (Baranov et al., Hägler et al.)
- We dont include feed down, e.g.  $h_c \rightarrow \eta_c \gamma$ . Contribution shown to be small (Baranov & A. Lipatov).

# **Predictions for** $\eta_c(2S)$



Figure: Differential cross section as a function of transverse momentum for prompt  $\eta_c(2S)$  production for  $\sqrt{s} = 7, 8, 13$  TeV.

(日) (四) (日) (日) (日)

# Choice of the LFWF



Figure: Transverse momentum distributions calculated with several different form factors obtained from different potential models of quarkonium wave function and one common normalization of |F(0,0)| as explained in the text.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

#### Integrated cross section with LHCb cuts



**Figure:** The integrated cross section computed within LHCb range of  $p_T$  and y with our transition form factors, compared to experimental values. Here red crosses represent values for Buchmüller-Tye potential (B-T) and deltoids for Power-law potential (P-law). Data are from [1],[2]

R. Aaij *et al.* [LHCb Collaboration], Eur. Phys. J. C **75**, no. 7, 311 (2015).
 A. Usachov, PhD-thesis, "Study of charmonium production using decays to hadronic final states with the LHCb experiment," arXiv:1910.08796 [hep-ex].

#### Importance of the form factor



Figure: Comparison of results for two different transition form factor, computed with the KMR unintegrated gluon distribution. We also show result when the  $(q_{1T}^2, q_{2T}^2)$  dependence of the transition form factor is neglected.

• pointlike coupling of  $\eta_c$  to gluons  $\propto \eta_c F^a_{\mu\nu} \tilde{F}^{a\mu\nu}$  badly overshoots data. Off-shell form factor is essential.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

### **Results for ATLAS/CMS kinematics**



Figure: Distribution in  $\log_{10}(x_1)$  or  $\log_{10}(x_2)$  (left panel) and distribution in  $q_{1T}$  or  $q_{2T}$  (right panel) for ATLAS or CMS conditions.

・ロト ・聞ト ・ヨト ・ヨト

3

#### **Results for ATLAS/CMS kinematics**



Figure: Transverse momentum distribution of prompt  $\eta_c(1S)$  for -2.5 < y < 2.5 and  $\sqrt{s} = 7$  TeV.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Conclusions

- The transition form factor for different wave functions obtained as a solution of the Schrödinger equation for the  $c\bar{c}$  system for different phenomenological  $c\bar{c}$  potentials from the literature, was calculated.
- We have studied the transition form factors for γ<sup>\*</sup>γ<sup>\*</sup> → η<sub>c</sub> (1S,2S) for two space-like virtual photons, which can be accessed experimentally in future measurements of the cross section for the e<sup>+</sup>e<sup>-</sup> → e<sup>+</sup>e<sup>-</sup>η<sub>c</sub> process in the double tag mode.
- The transition form factor for only one off-shell photon as a function of its virtuality,was studied and compared to the BaBar data for the  $\eta_c(1S)$  case.
- There is practically no dependence on the asymmetry parameter ω, which could be verified experimentally at Belle 2.
- $k_T$ -factorization approach with modern UGDs leads to good description of LHCb data for inclusive  $pp \rightarrow \eta_c$  for  $\sqrt{s} = 7,8$  TeV, and somewhat worse for  $\sqrt{s} = 13$  TeV (prelim. data). Some room for a color octet contribution is left.
- In the LHCb kinematics very small x are probed. Asymmetric kinematics where the small-x gluon transfers bulk of  $p_T$ .
- Despite sensitivity to small x, no sign of gluon saturation is observed. Integrated cross section grows even faster than the predictions without saturation.
- Predictions for  $\eta_c(2S)$ . A measurement could help to pin down possible color octet.
- Uncertainty due to  $g^*g^*\eta_c$  form factor somewhat smaller than the one from UGD.